(Ⅲ)對由a1=1.an=定義的數(shù)列{an}.求其通項公式an. 華南師大附中2007―2008學年度高三綜合測試(二) 查看更多

 

題目列表(包括答案和解析)

對于數(shù)列{an},(n∈N+,an∈N+),若bk為a1,a2,…,ak中最大值(k=1,2,…n),則稱數(shù)列{bn}為數(shù)列{an}的“凸值數(shù)列”.如數(shù)列2,1,3,7,5的“凸值數(shù)列”為2,2,3,7,7;由此定義,下列說法正確的有
①④
①④

①遞減數(shù)列{an}的“凸值數(shù)列”是常數(shù)列;
②不存在數(shù)列{an},它的“凸值數(shù)列”還是{an}本身;
③任意數(shù)列{an}的“凸值數(shù)列”是遞增數(shù)列;
④“凸值數(shù)列”為1,3,3,9,的所有數(shù)列{an}的個數(shù)為3.

查看答案和解析>>

定義:若數(shù)列{an}對任意n∈N*,滿足
an+2-an+1
an+1-an
=k
(k為常數(shù)),稱數(shù)列{an}為等差比數(shù)列.
(1)若數(shù)列{an}前n項和Sn滿足Sn=3(an-2),求{an}的通項公式,并判斷該數(shù)列是否為等差比數(shù)列;
(2)若數(shù)列{an}為等差數(shù)列,試判斷{an}是否一定為等差比數(shù)列,并說明理由;
(3)若數(shù)列{an}為等差比數(shù)列,定義中常數(shù)k=2,a2=3,a1=1,數(shù)列{
2n-1
an+1
}
的前n項和為Tn,求證:Tn<3.

查看答案和解析>>

對于數(shù)列{an},(n∈N+,an∈N+),若bk為a1,a2,…,ak中最大值(k=1,2,…n),則稱數(shù)列{bn}為數(shù)列{an}的“凸值數(shù)列”.如數(shù)列2,1,3,7,5的“凸值數(shù)列”為2,2,3,7,7;由此定義,下列說法正確的有   
①遞減數(shù)列{an}的“凸值數(shù)列”是常數(shù)列;
②不存在數(shù)列{an},它的“凸值數(shù)列”還是{an}本身;
③任意數(shù)列{an}的“凸值數(shù)列”是遞增數(shù)列;
④“凸值數(shù)列”為1,3,3,9,的所有數(shù)列{an}的個數(shù)為3.

查看答案和解析>>

對于數(shù)列{an},(n∈N+,an∈N+),若bk為a1,a2,…,ak中最大值(k=1,2,…n),則稱數(shù)列{bn}為數(shù)列{an}的“凸值數(shù)列”.如數(shù)列2,1,3,7,5的“凸值數(shù)列”為2,2,3,7,7;由此定義,下列說法正確的有   
①遞減數(shù)列{an}的“凸值數(shù)列”是常數(shù)列;
②不存在數(shù)列{an},它的“凸值數(shù)列”還是{an}本身;
③任意數(shù)列{an}的“凸值數(shù)列”是遞增數(shù)列;
④“凸值數(shù)列”為1,3,3,9,的所有數(shù)列{an}的個數(shù)為3.

查看答案和解析>>

對于數(shù)列{an},(n∈N+,an∈N+),若bk為a1,a2,…,ak中最大值(k=1,2,…n),則稱數(shù)列{bn}為數(shù)列{an}的“凸值數(shù)列”.如數(shù)列2,1,3,7,5的“凸值數(shù)列”為2,2,3,7,7;由此定義,下列說法正確的有________
①遞減數(shù)列{an}的“凸值數(shù)列”是常數(shù)列;
②不存在數(shù)列{an},它的“凸值數(shù)列”還是{an}本身;
③任意數(shù)列{an}的“凸值數(shù)列”是遞增數(shù)列;
④“凸值數(shù)列”為1,3,3,9,的所有數(shù)列{an}的個數(shù)為3.

查看答案和解析>>

一、選擇題

2,4,6

2,4,6

2.C  解析:由 不符合集合元素的互異性,故選C。

3.D  解析:

4.A  解析:由題可知,故選A.

5.C  解析:令公比為q,由a1=3,前三項的和為21可得q2+q-6=0,各項都為正數(shù),所以q=2,所以,故選C.

6.D 解析:上恒成立,即恒成立,故選D.

7.B  解析:因為定義在R上函數(shù)是偶函數(shù),所以,故函數(shù)以4為周期,所以

8.C 解析:關(guān)于y軸的對稱圖形,可得

圖象,再向右平移一個單位,即可得的圖象,即的圖

象,故選C.

9.B  解析:可采取特例法,例皆為滿足條件的函數(shù),一一驗證可知選B.

10.A  解析:故在[-2,2]上最大值為,所以最小值為,故選A.

二、填空題:

11.答案:6   解析:∵     ∴a7+a­11=6.

12.答案A=120°  解析:

13.答案:28  解析:由前面圖形規(guī)律知,第6個圖中小正方形的數(shù)量為1+2+3+…+7=28。

    三、解答題:

    15.解:(Ⅰ),,  令

    3m=1    ∴    ∴

    ∴{an+}是以為首項,4為公比的等比數(shù)列

    (Ⅱ)      

        

    16.解:(Ⅰ)

    時,的最小值為3-4

    (Ⅱ)∵    ∴

    時,單調(diào)減區(qū)間為

    17.解:(Ⅰ)的定義域關(guān)于原點對稱

    為奇函數(shù),則  ∴a=0

    (Ⅱ)

    ∴在

    上單調(diào)遞增

    上恒大于0只要大于0即可

    上恒大于0,a的取值范圍為

    18.解:(Ⅰ)延長RP交AB于M,設(shè)∠PAB=,則

    AM =90

           =10000-

     

          

      ∴當時,SPQCR有最大值

      答:長方形停車場PQCR面積的最磊值為平方米。

      19.解:(Ⅰ)【方法一】由

      依題設(shè)可知,△=(b+1)24c=0.

      .

      【方法二】依題設(shè)可知

      為切點橫坐標,

      于是,化簡得

      同法一得

      (Ⅱ)由

      可得

      依題設(shè)欲使函數(shù)內(nèi)有極值點,

      則須滿足

      亦即 ,

      故存在常數(shù),使得函數(shù)內(nèi)有極值點.

      (注:若,則應扣1分. )

      20.解:(Ⅰ)設(shè)函數(shù)

         (Ⅱ)由(Ⅰ)可知

      可知使恒成立的常數(shù)k=8.

      (Ⅲ)由(Ⅱ)知 

      可知數(shù)列為首項,8為公比的等比數(shù)列

      即以為首項,8為公比的等比數(shù)列. 則 

      .

       


      同步練習冊答案