如圖.已知點(diǎn)在圓柱的底面圓上. 查看更多

 

題目列表(包括答案和解析)

如圖,已知點(diǎn)在圓柱的底面圓上,為圓的直徑,圓柱的表面積為,,。

(1)求三棱錐的體積。

(2)求異面直線所成角的余弦值;

 

查看答案和解析>>

如圖,已知點(diǎn)在圓柱的底面圓上,為圓的直徑,圓柱的表面積為,,。
(1)求三棱錐的體積。
(2)求異面直線所成角的余弦值;

查看答案和解析>>

精英家教網(wǎng)如圖,已知點(diǎn)P在圓柱OO1的底面圓O上,AB、A1B1分別為圓O、圓O1的直徑且A1A⊥平面PAB.
(1)求證:BP⊥A1P;
(2)若圓柱OO1的體積V=12π,OA=2,∠AOP=120°,求三棱錐A1-APB的體積.

查看答案和解析>>

精英家教網(wǎng)如圖,已知點(diǎn)P在圓柱OO1的底面圓O上,AB為圓O的直徑,圓柱OO1的表面積為20π,OA=2,∠AOP=120°.
(1)求異面直線A1B與AP所成角的大;(結(jié)果用反三角函數(shù)值表示)
(2)求點(diǎn)A到平面A1PB的距離.

查看答案和解析>>

精英家教網(wǎng)如圖,已知點(diǎn)P在圓柱OO1的底面圓O上,AB為圓O的直徑,圓柱OO1的表面積為24π,OA=2,∠AOP=120°.
(1)求三棱錐A1-APB的體積.
(2)求異面直線A1B與OP所成角的大。唬ńY(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

一、填空題(本大題共11題,每小題5分,滿分55分)

1.     2.    3.      4.   5.           6.相離    7.     8.    9.     10.     11. 

二、選擇題(本大題共4題,每小題5分,滿分20分)

12.B   13. D    14.D    15.C

 

三、解答題(本大題滿分75分)

16.(1)證明:易知,又由平面,得,從而平面,故;                                     (4分)

  (2)解:延長交圓于點(diǎn),連接,,則,得或它的補(bǔ)角為異面直線所成的角.                       (6分)

由題意,解得.        (8分)

,,得,           (10分)

由余弦定理得,得異面直線所成的角為.                            (12分)

17.解:(1)摸出的2個(gè)球?yàn)楫惿虻牟煌ǚN數(shù)為種,從8個(gè)球中摸出2個(gè)球的不同摸法種數(shù)為,故所求的概率為; (6分)

(2)符合條件的摸法包括以下三種:一種是所摸得的3球中有1個(gè)紅球,1個(gè)黑球,1個(gè)白球,共有種不同摸法,                   (8分)

一種是所摸得的3球中有2個(gè)紅球,1個(gè)其它顏色球,共有種不同摸法,                                                   (10分)

一種是所摸得的3球均為紅球,共有種不同摸法,       (12分)

故符合條件的不同摸法共有種.                           (14分)

18.解:(1) 由已知,相減得,由,又,得,故數(shù)列是一個(gè)以為首項(xiàng),以為公比的等比數(shù)列.                    (4分)

    從而  ;                 (6分)

(2),                             (7分)

,故,            (11分)

于是,

當(dāng),即時(shí),,

當(dāng),即時(shí),

當(dāng),即時(shí),不存在.                    (14分)

19.(1)證明:任取,,且,

 

.

 所以在區(qū)間上為增函數(shù).                        (5分)

 函數(shù)在區(qū)間上為減函數(shù).                        (6分)

   (2)解:因?yàn)楹瘮?shù)在區(qū)間上為增函數(shù),相應(yīng)的函數(shù)值為,在區(qū)間上為減函數(shù),相應(yīng)的函數(shù)值為,由題意函數(shù)的圖像與直線有兩個(gè)不同的交點(diǎn),故有,              (8分)

    易知,分別位于直線的兩側(cè),由,得,故,又兩點(diǎn)的坐標(biāo)滿足方程,故得,,即,,(12分)

    故,

    當(dāng)時(shí),,.

    因此,的取值范圍為.                          (17分)

20. 解:(1)設(shè),易知,,由題設(shè)

其中,從而,,且,

又由已知,得

當(dāng)時(shí),,此時(shí),得

,故,

,,

當(dāng)時(shí),點(diǎn)為原點(diǎn),軸,軸,點(diǎn)也為原點(diǎn),從而點(diǎn)也為原點(diǎn),因此點(diǎn)的軌跡的方程為,它表示以原點(diǎn)為頂點(diǎn),以為焦點(diǎn)的拋物線;                                    (4分)

(2)由題設(shè),可設(shè)直線的方程為,直線的方程為,,又設(shè)、

 則由,消去,整理得,

 故,同理,                 (7分)

 則,

當(dāng)且僅當(dāng)時(shí)等號(hào)成立,因此四邊形面積的最小值為.

                                                          (9分)

    (3)當(dāng)時(shí)可設(shè)直線的方程為,

,得,

     故,              (13分)

     ,

     當(dāng)且僅當(dāng)時(shí)等號(hào)成立.                                (17分)

 當(dāng)時(shí),易知,,得,

故當(dāng)且僅當(dāng)時(shí)四邊形面積有最小值.         (18分)

 

 


同步練習(xí)冊(cè)答案