題目列表(包括答案和解析)
第八部分 靜電場
第一講 基本知識介紹
在奧賽考綱中,靜電學(xué)知識點數(shù)目不算多,總數(shù)和高考考綱基本相同,但在個別知識點上,奧賽的要求顯然更加深化了:如非勻強電場中電勢的計算、電容器的連接和靜電能計算、電介質(zhì)的極化等。在處理物理問題的方法上,對無限分割和疊加原理提出了更高的要求。
如果把靜電場的問題分為兩部分,那就是電場本身的問題、和對場中帶電體的研究,高考考綱比較注重第二部分中帶電粒子的運動問題,而奧賽考綱更注重第一部分和第二部分中的靜態(tài)問題。也就是說,奧賽關(guān)注的是電場中更本質(zhì)的內(nèi)容,關(guān)注的是縱向的深化和而非橫向的綜合。
一、電場強度
1、實驗定律
a、庫侖定律
內(nèi)容;
條件:⑴點電荷,⑵真空,⑶點電荷靜止或相對靜止。事實上,條件⑴和⑵均不能視為對庫侖定律的限制,因為疊加原理可以將點電荷之間的靜電力應(yīng)用到一般帶電體,非真空介質(zhì)可以通過介電常數(shù)將k進行修正(如果介質(zhì)分布是均勻和“充分寬廣”的,一般認為k′= k /εr)。只有條件⑶,它才是靜電學(xué)的基本前提和出發(fā)點(但這一點又是常常被忽視和被不恰當?shù)亍熬C合應(yīng)用”的)。
b、電荷守恒定律
c、疊加原理
2、電場強度
a、電場強度的定義
電場的概念;試探電荷(檢驗電荷);定義意味著一種適用于任何電場的對電場的檢測手段;電場線是抽象而直觀地描述電場有效工具(電場線的基本屬性)。
b、不同電場中場強的計算
決定電場強弱的因素有兩個:場源(帶電量和帶電體的形狀)和空間位置。這可以從不同電場的場強決定式看出——
⑴點電荷:E = k
結(jié)合點電荷的場強和疊加原理,我們可以求出任何電場的場強,如——
⑵均勻帶電環(huán),垂直環(huán)面軸線上的某點P:E = ,其中r和R的意義見圖7-1。
⑶均勻帶電球殼
內(nèi)部:E內(nèi) = 0
外部:E外 = k ,其中r指考察點到球心的距離
如果球殼是有厚度的的(內(nèi)徑R1 、外徑R2),在殼體中(R1<r<R2):
E = ,其中ρ為電荷體密度。這個式子的物理意義可以參照萬有引力定律當中(條件部分)的“剝皮法則”理解〔即為圖7-2中虛線以內(nèi)部分的總電量…〕。
⑷無限長均勻帶電直線(電荷線密度為λ):E =
⑸無限大均勻帶電平面(電荷面密度為σ):E = 2πkσ
二、電勢
1、電勢:把一電荷從P點移到參考點P0時電場力所做的功W與該電荷電量q的比值,即
U =
參考點即電勢為零的點,通常取無窮遠或大地為參考點。
和場強一樣,電勢是屬于場本身的物理量。W則為電荷的電勢能。
2、典型電場的電勢
a、點電荷
以無窮遠為參考點,U = k
b、均勻帶電球殼
以無窮遠為參考點,U外 = k ,U內(nèi) = k
3、電勢的疊加
由于電勢的是標量,所以電勢的疊加服從代數(shù)加法。很顯然,有了點電荷電勢的表達式和疊加原理,我們可以求出任何電場的電勢分布。
4、電場力對電荷做功
WAB = q(UA - UB)= qUAB
三、靜電場中的導(dǎo)體
靜電感應(yīng)→靜電平衡(狹義和廣義)→靜電屏蔽
1、靜電平衡的特征可以總結(jié)為以下三層含義——
a、導(dǎo)體內(nèi)部的合場強為零;表面的合場強不為零且一般各處不等,表面的合場強方向總是垂直導(dǎo)體表面。
b、導(dǎo)體是等勢體,表面是等勢面。
c、導(dǎo)體內(nèi)部沒有凈電荷;孤立導(dǎo)體的凈電荷在表面的分布情況取決于導(dǎo)體表面的曲率。
2、靜電屏蔽
導(dǎo)體殼(網(wǎng)罩)不接地時,可以實現(xiàn)外部對內(nèi)部的屏蔽,但不能實現(xiàn)內(nèi)部對外部的屏蔽;導(dǎo)體殼(網(wǎng)罩)接地后,既可實現(xiàn)外部對內(nèi)部的屏蔽,也可實現(xiàn)內(nèi)部對外部的屏蔽。
四、電容
1、電容器
孤立導(dǎo)體電容器→一般電容器
2、電容
a、定義式 C =
b、決定式。決定電容器電容的因素是:導(dǎo)體的形狀和位置關(guān)系、絕緣介質(zhì)的種類,所以不同電容器有不同的電容
⑴平行板電容器 C = = ,其中ε為絕對介電常數(shù)(真空中ε0 = ,其它介質(zhì)中ε= ),εr則為相對介電常數(shù),εr = 。
⑵柱形電容器:C =
⑶球形電容器:C =
3、電容器的連接
a、串聯(lián) = +++ … +
b、并聯(lián) C = C1 + C2 + C3 + … + Cn
4、電容器的能量
用圖7-3表征電容器的充電過程,“搬運”電荷做功W就是圖中陰影的面積,這也就是電容器的儲能E ,所以
E = q0U0 = C =
電場的能量。電容器儲存的能量究竟是屬于電荷還是屬于電場?正確答案是后者,因此,我們可以將電容器的能量用場強E表示。
對平行板電容器 E總 = E2
認為電場能均勻分布在電場中,則單位體積的電場儲能 w = E2 。而且,這以結(jié)論適用于非勻強電場。
五、電介質(zhì)的極化
1、電介質(zhì)的極化
a、電介質(zhì)分為兩類:無極分子和有極分子,前者是指在沒有外電場時每個分子的正、負電荷“重心”彼此重合(如氣態(tài)的H2 、O2 、N2和CO2),后者則反之(如氣態(tài)的H2O 、SO2和液態(tài)的水硝基笨)
b、電介質(zhì)的極化:當介質(zhì)中存在外電場時,無極分子會變?yōu)橛袠O分子,有極分子會由原來的雜亂排列變成規(guī)則排列,如圖7-4所示。
2、束縛電荷、自由電荷、極化電荷與宏觀過剩電荷
a、束縛電荷與自由電荷:在圖7-4中,電介質(zhì)左右兩端分別顯現(xiàn)負電和正電,但這些電荷并不能自由移動,因此稱為束縛電荷,除了電介質(zhì),導(dǎo)體中的原子核和內(nèi)層電子也是束縛電荷;反之,能夠自由移動的電荷稱為自由電荷。事實上,導(dǎo)體中存在束縛電荷與自由電荷,絕緣體中也存在束縛電荷和自由電荷,只是它們的比例差異較大而已。
b、極化電荷是更嚴格意義上的束縛電荷,就是指圖7-4中電介質(zhì)兩端顯現(xiàn)的電荷。而宏觀過剩電荷是相對極化電荷來說的,它是指可以自由移動的凈電荷。宏觀過剩電荷與極化電荷的重要區(qū)別是:前者能夠用來沖放電,也能用儀表測量,但后者卻不能。
第二講 重要模型與專題
一、場強和電場力
【物理情形1】試證明:均勻帶電球殼內(nèi)部任意一點的場強均為零。
【模型分析】這是一個疊加原理應(yīng)用的基本事例。
如圖7-5所示,在球殼內(nèi)取一點P ,以P為頂點做兩個對頂?shù)、頂角很小的錐體,錐體與球面相交得到球面上的兩個面元ΔS1和ΔS2 ,設(shè)球面的電荷面密度為σ,則這兩個面元在P點激發(fā)的場強分別為
ΔE1 = k
ΔE2 = k
為了弄清ΔE1和ΔE2的大小關(guān)系,引進錐體頂部的立體角ΔΩ ,顯然
= ΔΩ =
所以 ΔE1 = k ,ΔE2 = k ,即:ΔE1 = ΔE2 ,而它們的方向是相反的,故在P點激發(fā)的合場強為零。
同理,其它各個相對的面元ΔS3和ΔS4 、ΔS5和ΔS6 … 激發(fā)的合場強均為零。原命題得證。
【模型變換】半徑為R的均勻帶電球面,電荷的面密度為σ,試求球心處的電場強度。
【解析】如圖7-6所示,在球面上的P處取一極小的面元ΔS ,它在球心O點激發(fā)的場強大小為
ΔE = k ,方向由P指向O點。
無窮多個這樣的面元激發(fā)的場強大小和ΔS激發(fā)的完全相同,但方向各不相同,它們矢量合成的效果怎樣呢?這里我們要大膽地預(yù)見——由于由于在x方向、y方向上的對稱性,Σ = Σ = 0 ,最后的ΣE = ΣEz ,所以先求
ΔEz = ΔEcosθ= k ,而且ΔScosθ為面元在xoy平面的投影,設(shè)為ΔS′
所以 ΣEz = ΣΔS′
而 ΣΔS′= πR2
【答案】E = kπσ ,方向垂直邊界線所在的平面。
〖學(xué)員思考〗如果這個半球面在yoz平面的兩邊均勻帶有異種電荷,面密度仍為σ,那么,球心處的場強又是多少?
〖推薦解法〗將半球面看成4個球面,每個球面在x、y、z三個方向上分量均為 kπσ,能夠?qū)ΨQ抵消的將是y、z兩個方向上的分量,因此ΣE = ΣEx …
〖答案〗大小為kπσ,方向沿x軸方向(由帶正電的一方指向帶負電的一方)。
【物理情形2】有一個均勻的帶電球體,球心在O點,半徑為R ,電荷體密度為ρ ,球體內(nèi)有一個球形空腔,空腔球心在O′點,半徑為R′,= a ,如圖7-7所示,試求空腔中各點的場強。
【模型分析】這里涉及兩個知識的應(yīng)用:一是均勻帶電球體的場強定式(它也是來自疊加原理,這里具體用到的是球體內(nèi)部的結(jié)論,即“剝皮法則”),二是填補法。
將球體和空腔看成完整的帶正電的大球和帶負電(電荷體密度相等)的小球的集合,對于空腔中任意一點P ,設(shè) = r1 , = r2 ,則大球激發(fā)的場強為
E1 = k = kρπr1 ,方向由O指向P
“小球”激發(fā)的場強為
E2 = k = kρπr2 ,方向由P指向O′
E1和E2的矢量合成遵從平行四邊形法則,ΣE的方向如圖。又由于矢量三角形PE1ΣE和空間位置三角形OP O′是相似的,ΣE的大小和方向就不難確定了。
【答案】恒為kρπa ,方向均沿O → O′,空腔里的電場是勻強電場。
〖學(xué)員思考〗如果在模型2中的OO′連線上O′一側(cè)距離O為b(b>R)的地方放一個電量為q的點電荷,它受到的電場力將為多大?
〖解說〗上面解法的按部就班應(yīng)用…
〖答〗πkρq〔?〕。
二、電勢、電量與電場力的功
【物理情形1】如圖7-8所示,半徑為R的圓環(huán)均勻帶電,電荷線密度為λ,圓心在O點,過圓心跟環(huán)面垂直的軸線上有P點, = r ,以無窮遠為參考點,試求P點的電勢UP 。
【模型分析】這是一個電勢標量疊加的簡單模型。先在圓環(huán)上取一個元段ΔL ,它在P點形成的電勢
ΔU = k
環(huán)共有段,各段在P點形成的電勢相同,而且它們是標量疊加。
【答案】UP =
〖思考〗如果上題中知道的是環(huán)的總電量Q ,則UP的結(jié)論為多少?如果這個總電量的分布不是均勻的,結(jié)論會改變嗎?
〖答〗UP = ;結(jié)論不會改變。
〖再思考〗將環(huán)換成半徑為R的薄球殼,總電量仍為Q ,試問:(1)當電量均勻分布時,球心電勢為多少?球內(nèi)(包括表面)各點電勢為多少?(2)當電量不均勻分布時,球心電勢為多少?球內(nèi)(包括表面)各點電勢為多少?
〖解說〗(1)球心電勢的求解從略;
球內(nèi)任一點的求解參看圖7-5
ΔU1 = k= k·= kσΔΩ
ΔU2 = kσΔΩ
它們代數(shù)疊加成 ΔU = ΔU1 + ΔU2 = kσΔΩ
而 r1 + r2 = 2Rcosα
所以 ΔU = 2RkσΔΩ
所有面元形成電勢的疊加 ΣU = 2RkσΣΔΩ
注意:一個完整球面的ΣΔΩ = 4π(單位:球面度sr),但作為對頂?shù)腻F角,ΣΔΩ只能是2π ,所以——
ΣU = 4πRkσ= k
(2)球心電勢的求解和〖思考〗相同;
球內(nèi)任一點的電勢求解可以從(1)問的求解過程得到結(jié)論的反證。
〖答〗(1)球心、球內(nèi)任一點的電勢均為k ;(2)球心電勢仍為k ,但其它各點的電勢將隨電量的分布情況的不同而不同(內(nèi)部不再是等勢體,球面不再是等勢面)。
【相關(guān)應(yīng)用】如圖7-9所示,球形導(dǎo)體空腔內(nèi)、外壁的半徑分別為R1和R2 ,帶有凈電量+q ,現(xiàn)在其內(nèi)部距球心為r的地方放一個電量為+Q的點電荷,試求球心處的電勢。
【解析】由于靜電感應(yīng),球殼的內(nèi)、外壁形成兩個帶電球殼。球心電勢是兩個球殼形成電勢、點電荷形成電勢的合效果。
根據(jù)靜電感應(yīng)的嘗試,內(nèi)壁的電荷量為-Q ,外壁的電荷量為+Q+q ,雖然內(nèi)壁的帶電是不均勻的,根據(jù)上面的結(jié)論,其在球心形成的電勢仍可以應(yīng)用定式,所以…
【答案】Uo = k - k + k 。
〖反饋練習(xí)〗如圖7-10所示,兩個極薄的同心導(dǎo)體球殼A和B,半徑分別為RA和RB ,現(xiàn)讓A殼接地,而在B殼的外部距球心d的地方放一個電量為+q的點電荷。試求:(1)A球殼的感應(yīng)電荷量;(2)外球殼的電勢。
〖解說〗這是一個更為復(fù)雜的靜電感應(yīng)情形,B殼將形成圖示的感應(yīng)電荷分布(但沒有凈電量),A殼的情形未畫出(有凈電量),它們的感應(yīng)電荷分布都是不均勻的。
此外,我們還要用到一個重要的常識:接地導(dǎo)體(A殼)的電勢為零。但值得注意的是,這里的“為零”是一個合效果,它是點電荷q 、A殼、B殼(帶同樣電荷時)單獨存在時在A中形成的的電勢的代數(shù)和,所以,當我們以球心O點為對象,有
UO = k + k + k = 0
QB應(yīng)指B球殼上的凈電荷量,故 QB = 0
所以 QA = -q
☆學(xué)員討論:A殼的各處電勢均為零,我們的方程能不能針對A殼表面上的某點去列?(答:不能,非均勻帶電球殼的球心以外的點不能應(yīng)用定式。
基于剛才的討論,求B的電勢時也只能求B的球心的電勢(獨立的B殼是等勢體,球心電勢即為所求)——
UB = k + k
〖答〗(1)QA = -q ;(2)UB = k(1-) 。
【物理情形2】圖7-11中,三根實線表示三根首尾相連的等長絕緣細棒,每根棒上的電荷分布情況與絕緣棒都換成導(dǎo)體棒時完全相同。點A是Δabc的中心,點B則與A相對bc棒對稱,且已測得它們的電勢分別為UA和UB 。試問:若將ab棒取走,A、B兩點的電勢將變?yōu)槎嗌伲?/p>
【模型分析】由于細棒上的電荷分布既不均勻、三根細棒也沒有構(gòu)成環(huán)形,故前面的定式不能直接應(yīng)用。若用元段分割→疊加,也具有相當?shù)睦щy。所以這里介紹另一種求電勢的方法。
每根細棒的電荷分布雖然復(fù)雜,但相對各自的中點必然是對稱的,而且三根棒的總電量、分布情況彼此必然相同。這就意味著:①三棒對A點的電勢貢獻都相同(可設(shè)為U1);②ab棒、ac棒對B點的電勢貢獻相同(可設(shè)為U2);③bc棒對A、B兩點的貢獻相同(為U1)。
所以,取走ab前 3U1 = UA
2U2 + U1 = UB
取走ab后,因三棒是絕緣體,電荷分布不變,故電勢貢獻不變,所以
UA′= 2U1
UB′= U1 + U2
【答案】UA′= UA ;UB′= UA + UB 。
〖模型變換〗正四面體盒子由彼此絕緣的四塊導(dǎo)體板構(gòu)成,各導(dǎo)體板帶電且電勢分別為U1 、U2 、U3和U4 ,則盒子中心點O的電勢U等于多少?
〖解說〗此處的四塊板子雖然位置相對O點具有對稱性,但電量各不相同,因此對O點的電勢貢獻也不相同,所以應(yīng)該想一點辦法——
我們用“填補法”將電量不對稱的情形加以改觀:先將每一塊導(dǎo)體板復(fù)制三塊,作成一個正四面體盒子,然后將這四個盒子位置重合地放置——構(gòu)成一個有四層壁的新盒子。在這個新盒子中,每個壁的電量將是完全相同的(為原來四塊板的電量之和)、電勢也完全相同(為U1 + U2 + U3 + U4),新盒子表面就構(gòu)成了一個等勢面、整個盒子也是一個等勢體,故新盒子的中心電勢為
U′= U1 + U2 + U3 + U4
最后回到原來的單層盒子,中心電勢必為 U = U′
〖答〗U = (U1 + U2 + U3 + U4)。
☆學(xué)員討論:剛才的這種解題思想是否適用于“物理情形2”?(答:不行,因為三角形各邊上電勢雖然相等,但中點的電勢和邊上的并不相等。)
〖反饋練習(xí)〗電荷q均勻分布在半球面ACB上,球面半徑為R ,CD為通過半球頂點C和球心O的軸線,如圖7-12所示。P、Q為CD軸線上相對O點對稱的兩點,已知P點的電勢為UP ,試求Q點的電勢UQ 。
〖解說〗這又是一個填補法的應(yīng)用。將半球面補成完整球面,并令右邊內(nèi)、外層均勻地帶上電量為q的電荷,如圖7-12所示。
從電量的角度看,右半球面可以看作不存在,故這時P、Q的電勢不會有任何改變。
而換一個角度看,P、Q的電勢可以看成是兩者的疊加:①帶電量為2q的完整球面;②帶電量為-q的半球面。
考查P點,UP = k + U半球面
其中 U半球面顯然和為填補時Q點的電勢大小相等、符號相反,即 U半球面= -UQ
以上的兩個關(guān)系已經(jīng)足以解題了。
〖答〗UQ = k - UP 。
【物理情形3】如圖7-13所示,A、B兩點相距2L ,圓弧是以B為圓心、L為半徑的半圓。A處放有電量為q的電荷,B處放有電量為-q的點電荷。試問:(1)將單位正電荷從O點沿移到D點,電場力對它做了多少功?(2)將單位負電荷從D點沿AB的延長線移到無窮遠處去,電場力對它做多少功?
【模型分析】電勢疊加和關(guān)系WAB = q(UA - UB)= qUAB的基本應(yīng)用。
UO = k + k = 0
UD = k + k = -
U∞ = 0
再用功與電勢的關(guān)系即可。
【答案】(1);(2)。
【相關(guān)應(yīng)用】在不計重力空間,有A、B兩個帶電小球,電量分別為q1和q2 ,質(zhì)量分別為m1和m2 ,被固定在相距L的兩點。試問:(1)若解除A球的固定,它能獲得的最大動能是多少?(2)若同時解除兩球的固定,它們各自的獲得的最大動能是多少?(3)未解除固定時,這個系統(tǒng)的靜電勢能是多少?
【解說】第(1)問甚間;第(2)問在能量方面類比反沖裝置的能量計算,另啟用動量守恒關(guān)系;第(3)問是在前兩問基礎(chǔ)上得出的必然結(jié)論…(這里就回到了一個基本的觀念斧正:勢能是屬于場和場中物體的系統(tǒng),而非單純屬于場中物體——這在過去一直是被忽視的。在兩個點電荷的環(huán)境中,我們通常說“兩個點電荷的勢能”是多少。)
【答】(1)k;(2)Ek1 = k ,Ek2 = k;(3)k 。
〖思考〗設(shè)三個點電荷的電量分別為q1 、q2和q3 ,兩兩相距為r12 、r23和r31 ,則這個點電荷系統(tǒng)的靜電勢能是多少?
〖解〗略。
〖答〗k(++)。
〖反饋應(yīng)用〗如圖7-14所示,三個帶同種電荷的相同金屬小球,每個球的質(zhì)量均為m 、電量均為q ,用長度為L的三根絕緣輕繩連接著,系統(tǒng)放在光滑、絕緣的水平面上。現(xiàn)將其中的一根繩子剪斷,三個球?qū)㈤_始運動起來,試求中間這個小球的最大速度。
〖解〗設(shè)剪斷的是1、3之間的繩子,動力學(xué)分析易知,2球獲得最大動能時,1、2之間的繩子與2、3之間的繩子剛好應(yīng)該在一條直線上。而且由動量守恒知,三球不可能有沿繩子方向的速度。設(shè)2球的速度為v ,1球和3球的速度為v′,則
動量關(guān)系 mv + 2m v′= 0
能量關(guān)系 3k = 2 k + k + mv2 + 2m
解以上兩式即可的v值。
〖答〗v = q 。
三、電場中的導(dǎo)體和電介質(zhì)
【物理情形】兩塊平行放置的很大的金屬薄板A和B,面積都是S ,間距為d(d遠小于金屬板的線度),已知A板帶凈電量+Q1 ,B板帶盡電量+Q2 ,且Q2<Q1 ,試求:(1)兩板內(nèi)外表面的電量分別是多少;(2)空間各處的場強;(3)兩板間的電勢差。
【模型分析】由于靜電感應(yīng),A、B兩板的四個平面的電量將呈現(xiàn)一定規(guī)律的分布(金屬板雖然很薄,但內(nèi)部合場強為零的結(jié)論還是存在的);這里應(yīng)注意金屬板“很大”的前提條件,它事實上是指物理無窮大,因此,可以應(yīng)用無限大平板的場強定式。
為方便解題,做圖7-15,忽略邊緣效應(yīng),四個面的電荷分布應(yīng)是均勻的,設(shè)四個面的電荷面密度分別為σ1 、σ2 、σ3和σ4 ,顯然
(σ1 + σ2)S = Q1
(σ3 + σ4)S = Q2
A板內(nèi)部空間場強為零,有 2πk(σ1 ? σ2 ? σ3 ? σ4)= 0
A板內(nèi)部空間場強為零,有 2πk(σ1 + σ2 + σ3 ? σ4)= 0
解以上四式易得 σ1 = σ4 =
σ2 = ?σ3 =
有了四個面的電荷密度,Ⅰ、Ⅱ、Ⅲ空間的場強就好求了〔如EⅡ =2πk(σ1 + σ2 ? σ3 ? σ4)= 2πk〕。
最后,UAB = EⅡd
【答案】(1)A板外側(cè)電量、A板內(nèi)側(cè)電量,B板內(nèi)側(cè)電量?、B板外側(cè)電量;(2)A板外側(cè)空間場強2πk,方向垂直A板向外,A、B板之間空間場強2πk,方向由A垂直指向B,B板外側(cè)空間場強2πk,方向垂直B板向外;(3)A、B兩板的電勢差為2πkd,A板電勢高。
〖學(xué)員思考〗如果兩板帶等量異號的凈電荷,兩板的外側(cè)空間場強等于多少?(答:為零。)
〖學(xué)員討論〗(原模型中)作為一個電容器,它的“電量”是多少(答:)?如果在板間充滿相對介電常數(shù)為εr的電介質(zhì),是否會影響四個面的電荷分布(答:不會)?是否會影響三個空間的場強(答:只會影響Ⅱ空間的場強)?
〖學(xué)員討論〗(原模型中)我們是否可以求出A、B兩板之間的靜電力?〔答:可以;以A為對象,外側(cè)受力·(方向相左),內(nèi)側(cè)受力·(方向向右),它們合成即可,結(jié)論為F = Q1Q2 ,排斥力。〕
【模型變換】如圖7-16所示,一平行板電容器,極板面積為S ,其上半部為真空,而下半部充滿相對介電常數(shù)為εr的均勻電介質(zhì),當兩極板分別帶上+Q和?Q的電量后,試求:(1)板上自由電荷的分布;(2)兩板之間的場強;(3)介質(zhì)表面的極化電荷。
【解說】電介質(zhì)的充入雖然不能改變內(nèi)表面的電量總數(shù),但由于改變了場強,故對電荷的分布情況肯定有影響。設(shè)真空部分電量為Q1 ,介質(zhì)部分電量為Q2 ,顯然有
Q1 + Q2 = Q
兩板分別為等勢體,將電容器看成上下兩個電容器的并聯(lián),必有
U1 = U2 即 = ,即 =
解以上兩式即可得Q1和Q2 。
場強可以根據(jù)E = 關(guān)系求解,比較常規(guī)(上下部分的場強相等)。
上下部分的電量是不等的,但場強居然相等,這怎么解釋?從公式的角度看,E = 2πkσ(單面平板),當k 、σ同時改變,可以保持E不變,但這是一種結(jié)論所展示的表象。從內(nèi)在的角度看,k的改變正是由于極化電荷的出現(xiàn)所致,也就是說,極化電荷的存在相當于在真空中形成了一個新的電場,正是這個電場與自由電荷(在真空中)形成的電場疊加成為E2 ,所以
E2 = 4πk(σ ? σ′)= 4πk( ? )
請注意:①這里的σ′和Q′是指極化電荷的面密度和總量;② E = 4πkσ的關(guān)系是由兩個帶電面疊加的合效果。
【答案】(1)真空部分的電量為Q ,介質(zhì)部分的電量為Q ;(2)整個空間的場強均為 ;(3)Q 。
〖思考應(yīng)用〗一個帶電量為Q的金屬小球,周圍充滿相對介電常數(shù)為εr的均勻電介質(zhì),試求與與導(dǎo)體表面接觸的介質(zhì)表面的極化電荷量。
〖解〗略。
〖答〗Q′= Q 。
四、電容器的相關(guān)計算
【物理情形1】由許多個電容為C的電容器組成一個如圖7-17所示的多級網(wǎng)絡(luò),試問:(1)在最后一級的右邊并聯(lián)一個多大電容C′,可使整個網(wǎng)絡(luò)的A、B兩端電容也為C′?(2)不接C′,但無限地增加網(wǎng)絡(luò)的級數(shù),整個網(wǎng)絡(luò)A、B兩端的總電容是多少?
【模型分析】這是一個練習(xí)電容電路簡化基本事例。
第(1)問中,未給出具體級數(shù),一般結(jié)論應(yīng)適用特殊情形:令級數(shù)為1 ,于是
+ = 解C′即可。
第(2)問中,因為“無限”,所以“無限加一級后仍為無限”,不難得出方程
+ =
【答案】(1)C ;(2)C 。
【相關(guān)模型】在圖7-18所示的電路中,已知C1 = C2 = C3 = C9 = 1μF ,C4 = C5 = C6 = C7 = 2μF ,C8 = C10 = 3μF ,試求A、B之間的等效電容。
【解說】對于既非串聯(lián)也非并聯(lián)的電路,需要用到一種“Δ→Y型變換”,參見圖7-19,根據(jù)三個端點之間的電容等效,容易得出定式——
Δ→Y型:Ca =
Cb =
Cc =
Y→Δ型:C1 =
C2 =
C3 =
有了這樣的定式后,我們便可以進行如圖7-20所示的四步電路簡化(為了方便,電容不宜引進新的符號表達,而是直接將變換后的量值標示在圖中)——
【答】約2.23μF 。
【物理情形2】如圖7-21所示的電路中,三個電容器完全相同,電源電動勢ε1 = 3.0V ,ε2 = 4.5V,開關(guān)K1和K2接通前電容器均未帶電,試求K1和K2接通后三個電容器的電壓Uao 、Ubo和Uco各為多少。
【解說】這是一個考查電容器電路的基本習(xí)題,解題的關(guān)鍵是要抓與o相連的三塊極板(俗稱“孤島”)的總電量為零。
電量關(guān)系:++= 0
電勢關(guān)系:ε1 = Uao + Uob = Uao ? Ubo
ε2 = Ubo + Uoc = Ubo ? Uco
解以上三式即可。
【答】Uao = 3.5V ,Ubo = 0.5V ,Uco = ?4.0V 。
【伸展應(yīng)用】如圖7-22所示,由n個單元組成的電容器網(wǎng)絡(luò),每一個單元由三個電容器連接而成,其中有兩個的電容為3C ,另一個的電容為3C 。以a、b為網(wǎng)絡(luò)的輸入端,a′、b′為輸出端,今在a、b間加一個恒定電壓U ,而在a′b′間接一個電容為C的電容器,試求:(1)從第k單元輸入端算起,后面所有電容器儲存的總電能;(2)若把第一單元輸出端與后面斷開,再除去電源,并把它的輸入端短路,則這個單元的三個電容器儲存的總電能是多少?
【解說】這是一個結(jié)合網(wǎng)絡(luò)計算和“孤島現(xiàn)象”的典型事例。
(1)類似“物理情形1”的計算,可得 C總 = Ck = C
所以,從輸入端算起,第k單元后的電壓的經(jīng)驗公式為 Uk =
再算能量儲存就不難了。
(2)斷開前,可以算出第一單元的三個電容器、以及后面“系統(tǒng)”的電量分配如圖7-23中的左圖所示。這時,C1的右板和C2的左板(或C2的下板和C3的右板)形成“孤島”。此后,電容器的相互充電過程(C3類比為“電源”)滿足——
電量關(guān)系:Q1′= Q3′
Q2′+ Q3′=
電勢關(guān)系:+ =
從以上三式解得 Q1′= Q3′= ,Q2′= ,這樣系統(tǒng)的儲能就可以用得出了。
【答】(1)Ek = ;(2) 。
〖學(xué)員思考〗圖7-23展示的過程中,始末狀態(tài)的電容器儲能是否一樣?(答:不一樣;在相互充電的過程中,導(dǎo)線消耗的焦耳熱已不可忽略。)
☆第七部分完☆
X和Y是一種元素的兩種同位素的原子核,它們分別進行如下的衰變過程:XAB,YCD.則如下說法中正確的是
[ ]
A.B、D為另一種元素的兩種同位素的原子核
B.A比C的質(zhì)子數(shù)少3
C.X和Y核子數(shù)相同
D.在X,A,B,Y,C,D六種核中,C核質(zhì)子數(shù)最多
第Ⅰ卷(選擇題 共31分)
一、單項選擇題.本題共5小題,每小題3分,共計15分.每小題只有一個選項符合題意.
1. 關(guān)于科學(xué)家和他們的貢獻,下列說法中正確的是[來源:Www..com]
A.安培首先發(fā)現(xiàn)了電流的磁效應(yīng)
B.伽利略認為自由落體運動是速度隨位移均勻變化的運動
C.牛頓發(fā)現(xiàn)了萬有引力定律,并計算出太陽與地球間引力的大小
D.法拉第提出了電場的觀點,說明處于電場中電荷所受到的力是電場給予的
2.如圖為一種主動式光控報警器原理圖,圖中R1和R2為光敏電阻,R3和R4為定值電阻.當射向光敏電阻R1和R2的任何一束光線被遮擋時,都會引起警鈴發(fā)聲,則圖中虛線框內(nèi)的電路是
A.與門 B.或門 C.或非門 D.與非門
3.如圖所示的交流電路中,理想變壓器原線圈輸入電壓為U1,輸入功率為P1,輸出功率為P2,各交流電表均為理想電表.當滑動變阻器R的滑動頭向下移動時
A.燈L變亮 B.各個電表讀數(shù)均變大
C.因為U1不變,所以P1不變 D.P1變大,且始終有P1= P2
4.豎直平面內(nèi)光滑圓軌道外側(cè),一小球以某一水平速度v0從A點出發(fā)沿圓軌道運動,至B點時脫離軌道,最終落在水平面上的C點,不計空氣阻力.下列說法中不正確的是
A.在B點時,小球?qū)A軌道的壓力為零
B.B到C過程,小球做勻變速運動
C.在A點時,小球?qū)A軌道壓力大于其重力
D.A到B過程,小球水平方向的加速度先增加后減小
5.如圖所示,水平面上放置質(zhì)量為M的三角形斜劈,斜劈頂端安裝光滑的定滑輪,細繩跨過定滑輪分別連接質(zhì)量為m1和m2的物塊.m1在斜面上運動,三角形斜劈保持靜止狀態(tài).下列說法中正確的是
A.若m2向下運動,則斜劈受到水平面向左摩擦力
B.若m1沿斜面向下加速運動,則斜劈受到水平面向右的摩擦力
C.若m1沿斜面向下運動,則斜劈受到水平面的支持力大于(m1+ m2+M)g
D.若m2向上運動,則輕繩的拉力一定大于m2g
二、多項選擇題.本題共4小題,每小題4分,共計16分.每小題有多個選項符合題意.全部選對的得4分,選對但不全的得2分,錯選或不答的得0分.
6.木星是太陽系中最大的行星,它有眾多衛(wèi)星.觀察測出:木星繞太陽作圓周運動的半徑為r1、 周期為T1;木星的某一衛(wèi)星繞木星作圓周運動的半徑為r2、 周期為T2.已知萬有引力常量為G,則根據(jù)題中給定條件
A.能求出木星的質(zhì)量
B.能求出木星與衛(wèi)星間的萬有引力
C.能求出太陽與木星間的萬有引力
D.可以斷定
7.如圖所示,xOy坐標平面在豎直面內(nèi),x軸沿水平方向,y軸正方向豎直向上,在圖示空間內(nèi)有垂直于xOy平面的水平勻強磁場.一帶電小球從O點由靜止釋放,運動軌跡如圖中曲線.關(guān)于帶電小球的運動,下列說法中正確的是
A.OAB軌跡為半圓
B.小球運動至最低點A時速度最大,且沿水平方向
C.小球在整個運動過程中機械能守恒
D.小球在A點時受到的洛倫茲力與重力大小相等
8.如圖所示,質(zhì)量為M、長為L的木板置于光滑的水平面上,一質(zhì)量為m的滑塊放置在木板左端,滑塊與木板間滑動摩擦力大小為f,用水平的恒定拉力F作用于滑塊.當滑塊運動到木板右端時,木板在地面上移動的距離為s,滑塊速度為v1,木板速度為v2,下列結(jié)論中正確的是
A.上述過程中,F做功大小為
B.其他條件不變的情況下,F越大,滑塊到達右端所用時間越長
C.其他條件不變的情況下,M越大,s越小
D.其他條件不變的情況下,f越大,滑塊與木板間產(chǎn)生的熱量越多
9.如圖所示,兩個固定的相同細環(huán)相距一定的距離,同軸放置,O1、O2分別為兩環(huán)的圓心,兩環(huán)分別帶有均勻分布的等量異種電荷.一帶正電的粒子從很遠處沿軸線飛來并穿過兩環(huán).則在帶電粒子運動過程中
A.在O1點粒子加速度方向向左
B.從O1到O2過程粒子電勢能一直增加
C.軸線上O1點右側(cè)存在一點,粒子在該點動能最小
D.軸線上O1點右側(cè)、O2點左側(cè)都存在場強為零的點,它們關(guān)于O1、O2連線中點對稱
第Ⅱ卷(非選擇題 共89分)
三、簡答題:本題分必做題(第lO、11題)和選做題(第12題)兩部分,共計42分.請將解答填寫在答題卡相應(yīng)的位置.
必做題
10.測定木塊與長木板之間的動摩擦因數(shù)時,采用如圖所示的裝置,圖中長木板水平固定.
(1)實驗過程中,電火花計時器應(yīng)接在 ▲ (選填“直流”或“交流”)電源上.調(diào)整定滑輪高度,使 ▲ .
(2)已知重力加速度為g,測得木塊的質(zhì)量為M,砝碼盤和砝碼的總質(zhì)量為m,木塊的加速度為a,則木塊與長木板間動摩擦因數(shù)μ= ▲ .
(3)如圖為木塊在水平木板上帶動紙帶運動打出的一條紙帶的一部分,0、1、2、3、4、5、6為計數(shù)點,相鄰兩計數(shù)點間還有4個打點未畫出.從紙帶上測出x1=3.20cm,x2=4.52cm,x5=8.42cm,x6=9.70cm.則木塊加速度大小a= ▲ m/s2(保留兩位有效數(shù)字).
11.為了測量某電池的電動勢 E(約為3V)和內(nèi)阻 r,可供選擇的器材如下:
A.電流表G1(2mA 100Ω) B.電流表G2(1mA 內(nèi)阻未知)
C.電阻箱R1(0~999.9Ω) D.電阻箱R2(0~9999Ω)
E.滑動變阻器R3(0~10Ω 1A) F.滑動變阻器R4(0~1000Ω 10mA)
G.定值電阻R0(800Ω 0.1A) H.待測電池
I.導(dǎo)線、電鍵若干
(1)采用如圖甲所示的電路,測定電流表G2的內(nèi)阻,得到電流表G1的示數(shù)I1、電流表G2的示數(shù)I2如下表所示:
I1(mA) | 0.40 | 0.81 | 1.20 | 1.59 | 2.00 |
I2(mA) | 0.20 | 0.40 | 0.60 | 0.80 | 1.00 |
根據(jù)測量數(shù)據(jù),請在圖乙坐標中描點作出I1—I2圖線.由圖得到電流表G2的內(nèi)阻等于
▲ Ω.
(2)在現(xiàn)有器材的條件下,測量該電池電動勢和內(nèi)阻,采用如圖丙所示的電路,圖中滑動變阻器①應(yīng)該選用給定的器材中 ▲ ,電阻箱②選 ▲ (均填寫器材代號).
(3)根據(jù)圖丙所示電路,請在丁圖中用筆畫線代替導(dǎo)線,完成實物電路的連接.
12.選做題(請從A、B和C三小題中選定兩小題作答,并在答題卡上把所選題目對應(yīng)字母后的方框涂滿涂黑.如都作答,則按A、B兩小題評分.)
A.(選修模塊3-3)(12分)
(1)下列說法中正確的是 ▲
A.液體表面層分子間距離大于液體內(nèi)部分子間距離,液體表面存在張力
B.擴散運動就是布朗運動
C.蔗糖受潮后會粘在一起,沒有確定的幾何形狀,它是非晶體
D.對任何一類與熱現(xiàn)象有關(guān)的宏觀自然過程進行方向的說明,都可以作為熱力學(xué)第二定律的表述
(2)將1ml的純油酸加到500ml的酒精中,待均勻溶解后,用滴管取1ml油酸酒精溶液,讓其自然滴出,共200滴.現(xiàn)在讓其中一滴落到盛水的淺盤內(nèi),待油膜充分展開后,測得油膜的面積為200cm2,則估算油酸分子的大小是 ▲ m(保留一位有效數(shù)字).
(3)如圖所示,一直立的汽缸用一質(zhì)量為m的活塞封閉一定量的理想氣體,活塞橫截面積為S,汽缸內(nèi)壁光滑且缸壁是導(dǎo)熱的,開始活塞被固定,打開固定螺栓K,活塞下落,經(jīng)過足夠長時間后,活塞停在B點,已知AB=h,大氣壓強為p0,重力加速度為g.
①求活塞停在B點時缸內(nèi)封閉氣體的壓強;
②設(shè)周圍環(huán)境溫度保持不變,求整個過程中通過缸壁傳遞的熱量Q(一定量理想氣體的內(nèi)能僅由溫度決定).
B.(選修模塊3-4)(12分)
(1)下列說法中正確的是 ▲
A.照相機、攝影機鏡頭表面涂有增透膜,利用了光的干涉原理
B.光照射遮擋物形成的影輪廓模糊,是光的衍射現(xiàn)象
C.太陽光是偏振光
D.為了有效地發(fā)射電磁波,應(yīng)該采用長波發(fā)射
(2)甲、乙兩人站在地面上時身高都是L0, 甲、乙分別乘坐速度為0.6c和0.8c(c為光速)的飛船同向運動,如圖所示.此時乙觀察到甲的身高L ▲ L0;若甲向乙揮手,動作時間為t0,乙觀察到甲動作時間為t1,則t1 ▲ t0(均選填“>”、“ =” 或“<”).
(3)x=0的質(zhì)點在t=0時刻開始振動,產(chǎn)生的波沿x軸正方向傳播,t1=0.14s時刻波的圖象如圖所示,質(zhì)點A剛好開始振動.
①求波在介質(zhì)中的傳播速度;
②求x=4m的質(zhì)點在0.14s內(nèi)運動的路程.
C.(選修模塊3-5)(12分)
(1)下列說法中正確的是 ▲
A.康普頓效應(yīng)進一步證實了光的波動特性
B.為了解釋黑體輻射規(guī)律,普朗克提出電磁輻射的能量是量子化的
C.經(jīng)典物理學(xué)不能解釋原子的穩(wěn)定性和原子光譜的分立特征
D.天然放射性元素衰變的快慢與化學(xué)、物理狀態(tài)有關(guān)
(2)是不穩(wěn)定的,能自發(fā)的發(fā)生衰變.
①完成衰變反應(yīng)方程 ▲ .
②衰變?yōu)?img width=40 height=25 src="http://thumb.zyjl.cn/pic1/1899/wl/3/40403.gif" >,經(jīng)過 ▲ 次α衰變, ▲ 次β衰變.
(3)1919年,盧瑟福用α粒子轟擊氮核發(fā)現(xiàn)質(zhì)子.科學(xué)研究表明其核反應(yīng)過程是:α粒子轟擊靜止的氮核后形成了不穩(wěn)定的復(fù)核,復(fù)核發(fā)生衰變放出質(zhì)子,變成氧核.設(shè)α粒子質(zhì)量為m1,初速度為v0,氮核質(zhì)量為m2,質(zhì)子質(zhì)量為m0, 氧核的質(zhì)量為m3,不考慮相對論效應(yīng).
①α粒子轟擊氮核形成不穩(wěn)定復(fù)核的瞬間,復(fù)核的速度為多大?
②求此過程中釋放的核能.
四、計算題:本題共3小題,共計47分.解答時請寫出必要的文字說明、方程式和重要的演算步驟,只寫出最后答案的不能得分,有數(shù)值計算的題,答案中必須明確寫出數(shù)值和單位.
13.如圖所示,一質(zhì)量為m的氫氣球用細繩拴在地面上,地面上空風(fēng)速水平且恒為v0,球靜止時繩與水平方向夾角為α.某時刻繩突然斷裂,氫氣球飛走.已知氫氣球在空氣中運動時所受到的阻力f正比于其相對空氣的速度v,可以表示為f=kv(k為已知的常數(shù)).則
(1)氫氣球受到的浮力為多大?
(2)繩斷裂瞬間,氫氣球加速度為多大?
(3)一段時間后氫氣球在空中做勻速直線運動,其水平方向上的速度與風(fēng)速v0相等,求此時氣球速度大小(設(shè)空氣密度不發(fā)生變化,重力加速度為g).
14.如圖所示,光滑絕緣水平面上放置一均勻?qū)w制成的正方形線框abcd,線框質(zhì)量為m,電阻為R,邊長為L.有一方向豎直向下的有界磁場,磁場的磁感應(yīng)強度為B,磁場區(qū)寬度大于L,左邊界與ab邊平行.線框在水平向右的拉力作用下垂直于邊界線穿過磁場區(qū).
(1)若線框以速度v勻速穿過磁場區(qū),求線框在離開磁場時ab兩點間的電勢差;
(2)若線框從靜止開始以恒定的加速度a運動,經(jīng)過t1時間ab邊開始進入磁場,求cd邊將要進入磁場時刻回路的電功率;
(3)若線框以初速度v0進入磁場,且拉力的功率恒為P0.經(jīng)過時間T,cd邊進入磁場,此過程中回路產(chǎn)生的電熱為Q.后來ab邊剛穿出磁場時,線框速度也為v0,求線框穿過磁場所用的時間t.
15.如圖所示,有界勻強磁場的磁感應(yīng)強度為B,方向垂直紙面向里,MN為其左邊界,磁場中放置一半徑為R的圓柱形金屬圓筒,圓心O到MN的距離OO1=2R,圓筒軸線與磁場平行.圓筒用導(dǎo)線通過一個電阻r0接地,最初金屬圓筒不帶電.現(xiàn)有范圍足夠大的平行電子束以速度v0從很遠處沿垂直于左邊界MN向右射入磁場區(qū),已知電子質(zhì)量為m,電量為e.
(1)若電子初速度滿足,則在最初圓筒上沒有帶電時,能夠打到圓筒上的電子對應(yīng)MN邊界上O1兩側(cè)的范圍是多大?
(2)當圓筒上電量達到相對穩(wěn)定時,測量得到通過電阻r0的電流恒為I,忽略運動電子間的相互作用,求此時金屬圓筒的電勢φ和電子到達圓筒時速度v(取無窮遠處或大地電勢為零).
(3)在(2)的情況下,求金屬圓筒的發(fā)熱功率.
百度分享
一個有一定厚度的圓盤,可以繞通過中心垂直于盤面的水平軸轉(zhuǎn)動,用下面的方法測量它勻速轉(zhuǎn)動時的角速度。
實驗器材:電磁打點計時器、米尺、紙帶、復(fù)寫紙片。
實驗步驟:
(1)如圖1所示,將電磁打點計時器固定在桌面上,將紙帶的一端穿過打點計時器的限位孔后,固定在待測圓盤的側(cè)面上,使得圓盤轉(zhuǎn)動時,紙帶可以卷在圓盤側(cè)面上。
(2)啟動控制裝置使圓盤轉(zhuǎn)動,同時接通電源,打點計時器開始打點。
(3)經(jīng)過一段時間,停止轉(zhuǎn)動和打點,取下紙帶,進行測量。
① 由已知量和測得量表示的角速度的表達式為ω= 。式中各量的意義是:
.
② 某次實驗測得圓盤半徑r=5.50×10-2m,得到紙帶的一段如圖2所示,求得角速度為 。
(1),T為電磁打點計時器打點的時間間隔,r為圓盤的半徑,x2、x1是紙帶上選定的兩點分別對應(yīng)的米尺的刻度值,n為選定的兩點間的打點數(shù)(含兩點)。 (2)6.8/s。 |
第二部分 牛頓運動定律
第一講 牛頓三定律
一、牛頓第一定律
1、定律。慣性的量度
2、觀念意義,突破“初態(tài)困惑”
二、牛頓第二定律
1、定律
2、理解要點
a、矢量性
b、獨立作用性:ΣF → a ,ΣFx → ax …
c、瞬時性。合力可突變,故加速度可突變(與之對比:速度和位移不可突變);牛頓第二定律展示了加速度的決定式(加速度的定義式僅僅展示了加速度的“測量手段”)。
3、適用條件
a、宏觀、低速
b、慣性系
對于非慣性系的定律修正——引入慣性力、參與受力分析
三、牛頓第三定律
1、定律
2、理解要點
a、同性質(zhì)(但不同物體)
b、等時效(同增同減)
c、無條件(與運動狀態(tài)、空間選擇無關(guān))
第二講 牛頓定律的應(yīng)用
一、牛頓第一、第二定律的應(yīng)用
單獨應(yīng)用牛頓第一定律的物理問題比較少,一般是需要用其解決物理問題中的某一個環(huán)節(jié)。
應(yīng)用要點:合力為零時,物體靠慣性維持原有運動狀態(tài);只有物體有加速度時才需要合力。有質(zhì)量的物體才有慣性。a可以突變而v、s不可突變。
1、如圖1所示,在馬達的驅(qū)動下,皮帶運輸機上方的皮帶以恒定的速度向右運動。現(xiàn)將一工件(大小不計)在皮帶左端A點輕輕放下,則在此后的過程中( )
A、一段時間內(nèi),工件將在滑動摩擦力作用下,對地做加速運動
B、當工件的速度等于v時,它與皮帶之間的摩擦力變?yōu)殪o摩擦力
C、當工件相對皮帶靜止時,它位于皮帶上A點右側(cè)的某一點
D、工件在皮帶上有可能不存在與皮帶相對靜止的狀態(tài)
解說:B選項需要用到牛頓第一定律,A、C、D選項用到牛頓第二定律。
較難突破的是A選項,在為什么不會“立即跟上皮帶”的問題上,建議使用反證法(t → 0 ,a → ∞ ,則ΣFx → ∞ ,必然會出現(xiàn)“供不應(yīng)求”的局面)和比較法(為什么人跳上速度不大的物體可以不發(fā)生相對滑動?因為人是可以形變、重心可以調(diào)節(jié)的特殊“物體”)
此外,本題的D選項還要用到勻變速運動規(guī)律。用勻變速運動規(guī)律和牛頓第二定律不難得出
只有當L > 時(其中μ為工件與皮帶之間的動摩擦因素),才有相對靜止的過程,否則沒有。
答案:A、D
思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,試求工件到達皮帶右端的時間t(過程略,答案為5.5s)
進階練習(xí):在上面“思考”題中,將工件給予一水平向右的初速v0 ,其它條件不變,再求t(學(xué)生分以下三組進行)——
① v0 = 1m/s (答:0.5 + 37/8 = 5.13s)
② v0 = 4m/s (答:1.0 + 3.5 = 4.5s)
③ v0 = 1m/s (答:1.55s)
2、質(zhì)量均為m的兩只鉤碼A和B,用輕彈簧和輕繩連接,然后掛在天花板上,如圖2所示。試問:
① 如果在P處剪斷細繩,在剪斷瞬時,B的加速度是多少?
② 如果在Q處剪斷彈簧,在剪斷瞬時,B的加速度又是多少?
解說:第①問是常規(guī)處理。由于“彈簧不會立即發(fā)生形變”,故剪斷瞬間彈簧彈力維持原值,所以此時B鉤碼的加速度為零(A的加速度則為2g)。
第②問需要我們反省這樣一個問題:“彈簧不會立即發(fā)生形變”的原因是什么?是A、B兩物的慣性,且速度v和位移s不能突變。但在Q點剪斷彈簧時,彈簧卻是沒有慣性的(沒有質(zhì)量),遵從理想模型的條件,彈簧應(yīng)在一瞬間恢復(fù)原長!即彈簧彈力突變?yōu)榱恪?/p>
答案:0 ;g 。
二、牛頓第二定律的應(yīng)用
應(yīng)用要點:受力較少時,直接應(yīng)用牛頓第二定律的“矢量性”解題。受力比較多時,結(jié)合正交分解與“獨立作用性”解題。
在難度方面,“瞬時性”問題相對較大。
1、滑塊在固定、光滑、傾角為θ的斜面上下滑,試求其加速度。
解說:受力分析 → 根據(jù)“矢量性”定合力方向 → 牛頓第二定律應(yīng)用
答案:gsinθ。
思考:如果斜面解除固定,上表仍光滑,傾角仍為θ,要求滑塊與斜面相對靜止,斜面應(yīng)具備一個多大的水平加速度?(解題思路完全相同,研究對象仍為滑塊。但在第二環(huán)節(jié)上應(yīng)注意區(qū)別。答:gtgθ。)
進階練習(xí)1:在一向右運動的車廂中,用細繩懸掛的小球呈現(xiàn)如圖3所示的穩(wěn)定狀態(tài),試求車廂的加速度。(和“思考”題同理,答:gtgθ。)
進階練習(xí)2、如圖4所示,小車在傾角為α的斜面上勻加速運動,車廂頂用細繩懸掛一小球,發(fā)現(xiàn)懸繩與豎直方向形成一個穩(wěn)定的夾角β。試求小車的加速度。
解:繼續(xù)貫徹“矢量性”的應(yīng)用,但數(shù)學(xué)處理復(fù)雜了一些(正弦定理解三角形)。
分析小球受力后,根據(jù)“矢量性”我們可以做如圖5所示的平行四邊形,并找到相應(yīng)的夾角。設(shè)張力T與斜面方向的夾角為θ,則
θ=(90°+ α)- β= 90°-(β-α) (1)
對灰色三角形用正弦定理,有
= (2)
解(1)(2)兩式得:ΣF =
最后運用牛頓第二定律即可求小球加速度(即小車加速度)
答: 。
2、如圖6所示,光滑斜面傾角為θ,在水平地面上加速運動。斜面上用一條與斜面平行的細繩系一質(zhì)量為m的小球,當斜面加速度為a時(a<ctgθ),小球能夠保持相對斜面靜止。試求此時繩子的張力T 。
解說:當力的個數(shù)較多,不能直接用平行四邊形尋求合力時,宜用正交分解處理受力,在對應(yīng)牛頓第二定律的“獨立作用性”列方程。
正交坐標的選擇,視解題方便程度而定。
解法一:先介紹一般的思路。沿加速度a方向建x軸,與a垂直的方向上建y軸,如圖7所示(N為斜面支持力)。于是可得兩方程
ΣFx = ma ,即Tx - Nx = ma
ΣFy = 0 , 即Ty + Ny = mg
代入方位角θ,以上兩式成為
T cosθ-N sinθ = ma (1)
T sinθ + Ncosθ = mg (2)
這是一個關(guān)于T和N的方程組,解(1)(2)兩式得:T = mgsinθ + ma cosθ
解法二:下面嘗試一下能否獨立地解張力T 。將正交分解的坐標選擇為:x——斜面方向,y——和斜面垂直的方向。這時,在分解受力時,只分解重力G就行了,但值得注意,加速度a不在任何一個坐標軸上,是需要分解的。矢量分解后,如圖8所示。
根據(jù)獨立作用性原理,ΣFx = max
即:T - Gx = max
即:T - mg sinθ = m acosθ
顯然,獨立解T值是成功的。結(jié)果與解法一相同。
答案:mgsinθ + ma cosθ
思考:當a>ctgθ時,張力T的結(jié)果會變化嗎?(從支持力的結(jié)果N = mgcosθ-ma sinθ看小球脫離斜面的條件,求脫離斜面后,θ條件已沒有意義。答:T = m 。)
學(xué)生活動:用正交分解法解本節(jié)第2題“進階練習(xí)2”
進階練習(xí):如圖9所示,自動扶梯與地面的夾角為30°,但扶梯的臺階是水平的。當扶梯以a = 4m/s2的加速度向上運動時,站在扶梯上質(zhì)量為60kg的人相對扶梯靜止。重力加速度g = 10 m/s2,試求扶梯對人的靜摩擦力f 。
解:這是一個展示獨立作用性原理的經(jīng)典例題,建議學(xué)生選擇兩種坐標(一種是沿a方向和垂直a方向,另一種是水平和豎直方向),對比解題過程,進而充分領(lǐng)會用牛頓第二定律解題的靈活性。
答:208N 。
3、如圖10所示,甲圖系著小球的是兩根輕繩,乙圖系著小球的是一根輕彈簧和輕繩,方位角θ已知,F(xiàn)將它們的水平繩剪斷,試求:在剪斷瞬間,兩種情形下小球的瞬時加速度。
解說:第一步,闡明繩子彈力和彈簧彈力的區(qū)別。
(學(xué)生活動)思考:用豎直的繩和彈簧懸吊小球,并用豎直向下的力拉住小球靜止,然后同時釋放,會有什么現(xiàn)象?原因是什么?
結(jié)論——繩子的彈力可以突變而彈簧的彈力不能突變(胡克定律)。
第二步,在本例中,突破“繩子的拉力如何瞬時調(diào)節(jié)”這一難點(從即將開始的運動來反推)。
知識點,牛頓第二定律的瞬時性。
答案:a甲 = gsinθ ;a乙 = gtgθ 。
應(yīng)用:如圖11所示,吊籃P掛在天花板上,與吊籃質(zhì)量相等的物體Q被固定在吊籃中的輕彈簧托住,當懸掛吊籃的細繩被燒斷瞬間,P、Q的加速度分別是多少?
解:略。
答:2g ;0 。
三、牛頓第二、第三定律的應(yīng)用
要點:在動力學(xué)問題中,如果遇到幾個研究對象時,就會面臨如何處理對象之間的力和對象與外界之間的力問題,這時有必要引進“系統(tǒng)”、“內(nèi)力”和“外力”等概念,并適時地運用牛頓第三定律。
在方法的選擇方面,則有“隔離法”和“整體法”。前者是根本,后者有局限,也有難度,但常常使解題過程簡化,使過程的物理意義更加明晰。
對N個對象,有N個隔離方程和一個(可能的)整體方程,這(N + 1)個方程中必有一個是通解方程,如何取舍,視解題方便程度而定。
補充:當多個對象不具有共同的加速度時,一般來講,整體法不可用,但也有一種特殊的“整體方程”,可以不受這個局限(可以介紹推導(dǎo)過程)——
Σ= m1 + m2 + m3 + … + mn
其中Σ只能是系統(tǒng)外力的矢量和,等式右邊也是矢量相加。
1、如圖12所示,光滑水平面上放著一個長為L的均質(zhì)直棒,現(xiàn)給棒一個沿棒方向的、大小為F的水平恒力作用,則棒中各部位的張力T隨圖中x的關(guān)系怎樣?
解說:截取隔離對象,列整體方程和隔離方程(隔離右段較好)。
答案:N = x 。
思考:如果水平面粗糙,結(jié)論又如何?
解:分兩種情況,(1)能拉動;(2)不能拉動。
第(1)情況的計算和原題基本相同,只是多了一個摩擦力的處理,結(jié)論的化簡也麻煩一些。
第(2)情況可設(shè)棒的總質(zhì)量為M ,和水平面的摩擦因素為μ,而F = μMg ,其中l(wèi)<L ,則x<(L-l)的右段沒有張力,x>(L-l)的左端才有張力。
答:若棒仍能被拉動,結(jié)論不變。
若棒不能被拉動,且F = μMg時(μ為棒與平面的摩擦因素,l為小于L的某一值,M為棒的總質(zhì)量),當x<(L-l),N≡0 ;當x>(L-l),N = 〔x -〈L-l〉〕。
應(yīng)用:如圖13所示,在傾角為θ的固定斜面上,疊放著兩個長方體滑塊,它們的質(zhì)量分別為m1和m2 ,它們之間的摩擦因素、和斜面的摩擦因素分別為μ1和μ2 ,系統(tǒng)釋放后能夠一起加速下滑,則它們之間的摩擦力大小為:
A、μ1 m1gcosθ ; B、μ2 m1gcosθ ;
C、μ1 m2gcosθ ; D、μ1 m2gcosθ ;
解:略。
答:B 。(方向沿斜面向上。)
思考:(1)如果兩滑塊不是下滑,而是以初速度v0一起上沖,以上結(jié)論會變嗎?(2)如果斜面光滑,兩滑塊之間有沒有摩擦力?(3)如果將下面的滑塊換成如圖14所示的盒子,上面的滑塊換成小球,它們以初速度v0一起上沖,球應(yīng)對盒子的哪一側(cè)內(nèi)壁有壓力?
解:略。
答:(1)不會;(2)沒有;(3)若斜面光滑,對兩內(nèi)壁均無壓力,若斜面粗糙,對斜面上方的內(nèi)壁有壓力。
2、如圖15所示,三個物體質(zhì)量分別為m1 、m2和m3 ,帶滑輪的物體放在光滑水平面上,滑輪和所有接觸面的摩擦均不計,繩子的質(zhì)量也不計,為使三個物體無相對滑動,水平推力F應(yīng)為多少?
解說:
此題對象雖然有三個,但難度不大。隔離m2 ,豎直方向有一個平衡方程;隔離m1 ,水平方向有一個動力學(xué)方程;整體有一個動力學(xué)方程。就足以解題了。
答案:F = 。
思考:若將質(zhì)量為m3物體右邊挖成凹形,讓m2可以自由擺動(而不與m3相碰),如圖16所示,其它條件不變。是否可以選擇一個恰當?shù)腇′,使三者無相對運動?如果沒有,說明理由;如果有,求出這個F′的值。
解:此時,m2的隔離方程將較為復(fù)雜。設(shè)繩子張力為T ,m2的受力情況如圖,隔離方程為:
= m2a
隔離m1 ,仍有:T = m1a
解以上兩式,可得:a = g
最后用整體法解F即可。
答:當m1 ≤ m2時,沒有適應(yīng)題意的F′;當m1 > m2時,適應(yīng)題意的F′= 。
3、一根質(zhì)量為M的木棒,上端用細繩系在天花板上,棒上有一質(zhì)量為m的貓,如圖17所示。現(xiàn)將系木棒的繩子剪斷,同時貓相對棒往上爬,但要求貓對地的高度不變,則棒的加速度將是多少?
解說:法一,隔離法。需要設(shè)出貓爪抓棒的力f ,然后列貓的平衡方程和棒的動力學(xué)方程,解方程組即可。
法二,“新整體法”。
據(jù)Σ= m1 + m2 + m3 + … + mn ,貓和棒的系統(tǒng)外力只有兩者的重力,豎直向下,而貓的加速度a1 = 0 ,所以:
( M + m )g = m·0 + M a1
解棒的加速度a1十分容易。
答案:g 。
四、特殊的連接體
當系統(tǒng)中各個體的加速度不相等時,經(jīng)典的整體法不可用。如果各個體的加速度不在一條直線上,“新整體法”也將有一定的困難(矢量求和不易)。此時,我們回到隔離法,且要更加注意找各參量之間的聯(lián)系。
解題思想:抓某個方向上加速度關(guān)系。方法:“微元法”先看位移關(guān)系,再推加速度關(guān)系。、
1、如圖18所示,一質(zhì)量為M 、傾角為θ的光滑斜面,放置在光滑的水平面上,另一個質(zhì)量為m的滑塊從斜面頂端釋放,試求斜面的加速度。
解說:本題涉及兩個物體,它們的加速度關(guān)系復(fù)雜,但在垂直斜面方向上,大小是相等的。對兩者列隔離方程時,務(wù)必在這個方向上進行突破。
(學(xué)生活動)定型判斷斜面的運動情況、滑塊的運動情況。
位移矢量示意圖如圖19所示。根據(jù)運動學(xué)規(guī)律,加速度矢量a1和a2也具有這樣的關(guān)系。
(學(xué)生活動)這兩個加速度矢量有什么關(guān)系?
沿斜面方向、垂直斜面方向建x 、y坐標,可得:
a1y = a2y ①
且:a1y = a2sinθ ②
隔離滑塊和斜面,受力圖如圖20所示。
對滑塊,列y方向隔離方程,有:
mgcosθ- N = ma1y ③
對斜面,仍沿合加速度a2方向列方程,有:
Nsinθ= Ma2 ④
解①②③④式即可得a2 。
答案:a2 = 。
(學(xué)生活動)思考:如何求a1的值?
解:a1y已可以通過解上面的方程組求出;a1x只要看滑塊的受力圖,列x方向的隔離方程即可,顯然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后據(jù)a1 = 求a1 。
答:a1 = 。
2、如圖21所示,與水平面成θ角的AB棒上有一滑套C ,可以無摩擦地在棒上滑動,開始時與棒的A端相距b ,相對棒靜止。當棒保持傾角θ不變地沿水平面勻加速運動,加速度為a(且a>gtgθ)時,求滑套C從棒的A端滑出所經(jīng)歷的時間。
解說:這是一個比較特殊的“連接體問題”,尋求運動學(xué)參量的關(guān)系似乎比動力學(xué)分析更加重要。動力學(xué)方面,只需要隔離滑套C就行了。
(學(xué)生活動)思考:為什么題意要求a>gtgθ?(聯(lián)系本講第二節(jié)第1題之“思考題”)
定性繪出符合題意的運動過程圖,如圖22所示:S表示棒的位移,S1表示滑套的位移。沿棒與垂直棒建直角坐標后,S1x表示S1在x方向上的分量。不難看出:
S1x + b = S cosθ ①
設(shè)全程時間為t ,則有:
S = at2 ②
S1x = a1xt2 ③
而隔離滑套,受力圖如圖23所示,顯然:
mgsinθ= ma1x ④
解①②③④式即可。
答案:t =
另解:如果引進動力學(xué)在非慣性系中的修正式 Σ+ * = m (注:*為慣性力),此題極簡單。過程如下——
以棒為參照,隔離滑套,分析受力,如圖24所示。
注意,滑套相對棒的加速度a相是沿棒向上的,故動力學(xué)方程為:
F*cosθ- mgsinθ= ma相 (1)
其中F* = ma (2)
而且,以棒為參照,滑套的相對位移S相就是b ,即:
b = S相 = a相 t2 (3)
解(1)(2)(3)式就可以了。
第二講 配套例題選講
教材范本:龔霞玲主編《奧林匹克物理思維訓(xùn)練教材》,知識出版社,2002年8月第一版。
例題選講針對“教材”第三章的部分例題和習(xí)題。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com