如圖所示.豎直平面內的軌道ABCD由水平軌道AB與光滑的四分之一圓弧軌道CD組成.AB恰與圓弧CD在C點相切.軌道固定在水平面上.一個質量為m的小物塊從軌道的A端以初動能E沖上水平軌道AB.沿著軌道運動.由DC弧滑下后停在水平軌道AB的中點.已知水平軌道AB長為L.求: 查看更多

 

題目列表(包括答案和解析)

如圖1所示,一輕繩跨過一固定的滑輪,兩端各連接質量分別為m和m的物體.為不失一般性,設m<m.放手后m將加速下降,m加速上升,加速度大小均為a.注意此時輕繩也將做變速運動,為判斷繩中張力大小是否處處相等,如圖1中所示可以隔離質量為Δm的一小段繩子加以研究,其受力分析如圖2所示,Δmg為繩子本身所受的重力,F、F分別為上、下繩子的拉力.由牛頓第二定律有Δmg+F-F=Δma.由于整段繩為輕繩即質量可以忽略不計,故Δm趨近于零,而加速度a為有限值,因此F=F,即不論輕繩是否平衡均滿足張力大小處處相等.
力學問題的研究對象中有很多所謂的輕小物體,其特點之一就是可以忽略質量,同時也可以忽略重力.從上面的分析知可同樣對其作受力分析,利用牛頓運動定律求解有關問題.
例2   如圖3所示,一小球在紙面內來回擺動.當輕繩OA與OB拉力相等時,擺線OC與豎直面夾角θ為(    。
A.15°   B.30°   C.45°   D.60°

查看答案和解析>>

第三部分 運動學

第一講 基本知識介紹

一. 基本概念

1.  質點

2.  參照物

3.  參照系——固連于參照物上的坐標系(解題時要記住所選的是參照系,而不僅是一個點)

4.絕對運動,相對運動,牽連運動:v=v+v 

二.運動的描述

1.位置:r=r(t) 

2.位移:Δr=r(t+Δt)-r(t)

3.速度:v=limΔt→0Δr/Δt.在大學教材中表述為:v=dr/dt, 表示r對t 求導數

5.以上是運動學中的基本物理量,也就是位移、位移的一階導數、位移的二階導數?墒

三階導數為什么不是呢?因為牛頓第二定律是F=ma,即直接和加速度相聯(lián)系。(a對t的導數叫“急動度”。)

6.由于以上三個量均為矢量,所以在運算中用分量表示一般比較好

三.等加速運動

v(t)=v0+at           r(t)=r0+v0t+1/2 at

 一道經典的物理問題:二次世界大戰(zhàn)中物理學家曾經研究,當大炮的位置固定,以同一速度v0沿各種角度發(fā)射,問:當飛機在哪一區(qū)域飛行之外時,不會有危險?(注:結論是這一區(qū)域為一拋物線,此拋物線是所有炮彈拋物線的包絡線。此拋物線為在大炮上方h=v2/2g處,以v0平拋物體的軌跡。) 

練習題:

一盞燈掛在離地板高l2,天花板下面l1處。燈泡爆裂,所有碎片以同樣大小的速度v 朝各個方向飛去。求碎片落到地板上的半徑(認為碎片和天花板的碰撞是完全彈性的,即切向速度不變,法向速度反向;碎片和地板的碰撞是完全非彈性的,即碰后靜止。)

四.剛體的平動和定軸轉動

1. 我們講過的圓周運動是平動而不是轉動 

  2.  角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt

 3.  有限的角位移是標量,而極小的角位移是矢量

4.  同一剛體上兩點的相對速度和相對加速度 

兩點的相對距離不變,相對運動軌跡為圓弧,VA=VB+VAB,在AB連線上

投影:[VA]AB=[VB]AB,aA=aB+aAB,aAB=,anAB+,aτAB, ,aτAB垂直于AB,,anAB=VAB2/AB 

例:A,B,C三質點速度分別V,VB  ,VC      

求G的速度。

五.課后習題:

一只木筏離開河岸,初速度為V,方向垂直于岸邊,航行路線如圖。經過時間T木筏劃到路線上標有符號處。河水速度恒定U用作圖法找到在2T,3T,4T時刻木筏在航線上的確切位置。

五、處理問題的一般方法

(1)用微元法求解相關速度問題

例1:如圖所示,物體A置于水平面上,A前固定一滑輪B,高臺上有一定滑輪D,一根輕繩一端固定在C點,再繞過B、D,BC段水平,當以恒定水平速度v拉繩上的自由端時,A沿水平面前進,求當跨過B的兩段繩子的夾角為α時,A的運動速度。

(vA

(2)拋體運動問題的一般處理方法

  1. 平拋運動
  2. 斜拋運動
  3. 常見的處理方法

(1)將斜上拋運動分解為水平方向的勻速直線運動和豎直方向的豎直上拋運動

(2)將沿斜面和垂直于斜面方向作為x、y軸,分別分解初速度和加速度后用運動學公式解題

(3)將斜拋運動分解為沿初速度方向的斜向上的勻速直線運動和自由落體運動兩個分運動,用矢量合成法則求解

例2:在擲鉛球時,鉛球出手時距地面的高度為h,若出手時的速度為V0,求以何角度擲球時,水平射程最遠?最遠射程為多少?

(α=、 x=

第二講 運動的合成與分解、相對運動

(一)知識點點撥

  1. 力的獨立性原理:各分力作用互不影響,單獨起作用。
  2. 運動的獨立性原理:分運動之間互不影響,彼此之間滿足自己的運動規(guī)律
  3. 力的合成分解:遵循平行四邊形定則,方法有正交分解,解直角三角形等
  4. 運動的合成分解:矢量合成分解的規(guī)律方法適用
    1. 位移的合成分解 B.速度的合成分解 C.加速度的合成分解

參考系的轉換:動參考系,靜參考系

相對運動:動點相對于動參考系的運動

絕對運動:動點相對于靜參考系統(tǒng)(通常指固定于地面的參考系)的運動

牽連運動:動參考系相對于靜參考系的運動

(5)位移合成定理:SA對地=SAB+SB對地

速度合成定理:V絕對=V相對+V牽連

加速度合成定理:a絕對=a相對+a牽連

(二)典型例題

(1)火車在雨中以30m/s的速度向南行駛,雨滴被風吹向南方,在地球上靜止的觀察者測得雨滴的徑跡與豎直方向成21。角,而坐在火車里乘客看到雨滴的徑跡恰好豎直方向。求解雨滴相對于地的運動。

提示:矢量關系入圖

答案:83.7m/s

(2)某人手拿一只停表,上了一次固定樓梯,又以不同方式上了兩趟自動扶梯,為什么他可以根據測得的數據來計算自動扶梯的臺階數?

提示:V人對梯=n1/t1

      V梯對地=n/t2

      V人對地=n/t3

V人對地= V人對梯+ V梯對地

答案:n=t2t3n1/(t2-t3)t1

(3)某人駕船從河岸A處出發(fā)橫渡,如果使船頭保持跟河岸垂直的方向航行,則經10min后到達正對岸下游120m的C處,如果他使船逆向上游,保持跟河岸成а角的方向航行,則經過12.5min恰好到達正對岸的B處,求河的寬度。

提示:120=V水*600

        D=V船*600

 答案:200m

(4)一船在河的正中航行,河寬l=100m,流速u=5m/s,并在距船s=150m的下游形成瀑布,為了使小船靠岸時,不至于被沖進瀑布中,船對水的最小速度為多少?

提示:如圖船航行

答案:1.58m/s

(三)同步練習

1.一輛汽車的正面玻璃一次安裝成與水平方向傾斜角為β1=30°,另一次安裝成傾角為β2=15°。問汽車兩次速度之比為多少時,司機都是看見冰雹都是以豎直方向從車的正面玻璃上彈開?(冰雹相對地面是豎直下落的)

2、模型飛機以相對空氣v=39km/h的速度繞一個邊長2km的等邊三角形飛行,設風速u = 21km/h ,方向與三角形的一邊平行并與飛機起飛方向相同,試求:飛機繞三角形一周需多少時間?

3.圖為從兩列蒸汽機車上冒出的兩股長幅氣霧拖尾的照片(俯視)。兩列車沿直軌道分別以速度v1=50km/h和v2=70km/h行駛,行駛方向如箭頭所示,求風速。

4、細桿AB長L ,兩端分別約束在x 、 y軸上運動,(1)試求桿上與A點相距aL(0< a <1)的P點運動軌跡;(2)如果vA為已知,試求P點的x 、 y向分速度vPx和vPy對桿方位角θ的函數。

(四)同步練習提示與答案

1、提示:利用速度合成定理,作速度的矢量三角形。答案為:3。

2、提示:三角形各邊的方向為飛機合速度的方向(而非機頭的指向);

第二段和第三段大小相同。

參見右圖,顯然:

v2 =  + u2 - 2vucos120°

可解出 v = 24km/h 。

答案:0.2hour(或12min.)。

3、提示:方法與練習一類似。答案為:3

4、提示:(1)寫成參數方程后消參數θ。

(2)解法有講究:以A端為參照, 則桿上各點只繞A轉動。但鑒于桿子的實際運動情形如右圖,應有v = vAcosθ,v = vA,可知B端相對A的轉動線速度為:v + vAsinθ=  。

P點的線速度必為  = v 

所以 vPx = vcosθ+ vAx ,vPy = vAy - vsinθ

答案:(1) +  = 1 ,為橢圓;(2)vPx = avActgθ ,vPy =(1 - a)vA

查看答案和解析>>

第Ⅰ卷(選擇題 共31分)

一、單項選擇題.本題共5小題,每小題3分,共計15分.每小題只有一個選項符合題意.

1. 關于科學家和他們的貢獻,下列說法中正確的是[來源:Www..com]

A.安培首先發(fā)現了電流的磁效應

B.伽利略認為自由落體運動是速度隨位移均勻變化的運動

C.牛頓發(fā)現了萬有引力定律,并計算出太陽與地球間引力的大小

D.法拉第提出了電場的觀點,說明處于電場中電荷所受到的力是電場給予的

2.如圖為一種主動式光控報警器原理圖,圖中R1R2為光敏電阻,R3R4為定值電阻.當射向光敏電阻R1R2的任何一束光線被遮擋時,都會引起警鈴發(fā)聲,則圖中虛線框內的電路是

A.與門                  B.或門               C.或非門                  D.與非門

 


3.如圖所示的交流電路中,理想變壓器原線圈輸入電壓為U1,輸入功率為P1,輸出功率為P2,各交流電表均為理想電表.當滑動變阻器R的滑動頭向下移動時

A.燈L變亮                                    B.各個電表讀數均變大

C.因為U1不變,所以P1不變                              D.P1變大,且始終有P1= P2

4.豎直平面內光滑圓軌道外側,一小球以某一水平速度v0A點出發(fā)沿圓軌道運動,至B點時脫離軌道,最終落在水平面上的C點,不計空氣阻力.下列說法中不正確的是

A.在B點時,小球對圓軌道的壓力為零

B.BC過程,小球做勻變速運動

C.在A點時,小球對圓軌道壓力大于其重力

D.AB過程,小球水平方向的加速度先增加后減小

5.如圖所示,水平面上放置質量為M的三角形斜劈,斜劈頂端安裝光滑的定滑輪,細繩跨過定滑輪分別連接質量為m1m2的物塊.m1在斜面上運動,三角形斜劈保持靜止狀態(tài).下列說法中正確的是

A.若m2向下運動,則斜劈受到水平面向左摩擦力

B.若m1沿斜面向下加速運動,則斜劈受到水平面向右的摩擦力

C.若m1沿斜面向下運動,則斜劈受到水平面的支持力大于(m1+ m2+Mg

D.若m2向上運動,則輕繩的拉力一定大于m2g

二、多項選擇題.本題共4小題,每小題4分,共計16分.每小題有多個選項符合題意.全部選對的得4分,選對但不全的得2分,錯選或不答的得0分.

6.木星是太陽系中最大的行星,它有眾多衛(wèi)星.觀察測出:木星繞太陽作圓周運動的半徑為r1、 周期為T1;木星的某一衛(wèi)星繞木星作圓周運動的半徑為r2、 周期為T2.已知萬有引力常量為G,則根據題中給定條件

A.能求出木星的質量

B.能求出木星與衛(wèi)星間的萬有引力

C.能求出太陽與木星間的萬有引力

D.可以斷定

7.如圖所示,xOy坐標平面在豎直面內,x軸沿水平方向,y軸正方向豎直向上,在圖示空間內有垂直于xOy平面的水平勻強磁場.一帶電小球從O點由靜止釋放,運動軌跡如圖中曲線.關于帶電小球的運動,下列說法中正確的是

A.OAB軌跡為半圓

B.小球運動至最低點A時速度最大,且沿水平方向

C.小球在整個運動過程中機械能守恒

D.小球在A點時受到的洛倫茲力與重力大小相等

8.如圖所示,質量為M、長為L的木板置于光滑的水平面上,一質量為m的滑塊放置在木板左端,滑塊與木板間滑動摩擦力大小為f,用水平的恒定拉力F作用于滑塊.當滑塊運動到木板右端時,木板在地面上移動的距離為s,滑塊速度為v1,木板速度為v2,下列結論中正確的是

A.上述過程中,F做功大小為            

B.其他條件不變的情況下,F越大,滑塊到達右端所用時間越長

C.其他條件不變的情況下,M越大,s越小

D.其他條件不變的情況下,f越大,滑塊與木板間產生的熱量越多

9.如圖所示,兩個固定的相同細環(huán)相距一定的距離,同軸放置,O1、O2分別為兩環(huán)的圓心,兩環(huán)分別帶有均勻分布的等量異種電荷.一帶正電的粒子從很遠處沿軸線飛來并穿過兩環(huán).則在帶電粒子運動過程中

A.在O1點粒子加速度方向向左

B.從O1O2過程粒子電勢能一直增加

C.軸線上O1點右側存在一點,粒子在該點動能最小

D.軸線上O1點右側、O2點左側都存在場強為零的點,它們關于O1、O2連線中點對稱

 


第Ⅱ卷(非選擇題 共89分)

三、簡答題:本題分必做題(第lO、11題)和選做題(第12題)兩部分,共計42分.請將解答填寫在答題卡相應的位置.

必做題

10.測定木塊與長木板之間的動摩擦因數時,采用如圖所示的裝置,圖中長木板水平固定.

(1)實驗過程中,電火花計時器應接在  ▲  (選填“直流”或“交流”)電源上.調整定滑輪高度,使  ▲ 

(2)已知重力加速度為g,測得木塊的質量為M,砝碼盤和砝碼的總質量為m,木塊的加速度為a,則木塊與長木板間動摩擦因數μ=  ▲ 

(3)如圖為木塊在水平木板上帶動紙帶運動打出的一條紙帶的一部分,0、1、2、3、4、5、6為計數點,相鄰兩計數點間還有4個打點未畫出.從紙帶上測出x1=3.20cm,x2=4.52cm,x5=8.42cm,x6=9.70cm.則木塊加速度大小a=  ▲  m/s2(保留兩位有效數字).

 


11.為了測量某電池的電動勢 E(約為3V)和內阻 r,可供選擇的器材如下:

A.電流表G1(2mA  100Ω)             B.電流表G2(1mA  內阻未知)

C.電阻箱R1(0~999.9Ω)                      D.電阻箱R2(0~9999Ω)

E.滑動變阻器R3(0~10Ω  1A)         F.滑動變阻器R4(0~1000Ω  10mA)

G.定值電阻R0(800Ω  0.1A)               H.待測電池

I.導線、電鍵若干

(1)采用如圖甲所示的電路,測定電流表G2的內阻,得到電流表G1的示數I1、電流表G2的示數I2如下表所示:

I1(mA)

0.40

0.81

1.20

1.59

2.00

I2(mA)

0.20

0.40

0.60

0.80

1.00

 


根據測量數據,請在圖乙坐標中描點作出I1I2圖線.由圖得到電流表G2的內阻等于

  ▲  Ω.

(2)在現有器材的條件下,測量該電池電動勢和內阻,采用如圖丙所示的電路,圖中滑動變阻器①應該選用給定的器材中  ▲  ,電阻箱②選  ▲  (均填寫器材代號).

(3)根據圖丙所示電路,請在丁圖中用筆畫線代替導線,完成實物電路的連接.

 


12.選做題(請從A、B和C三小題中選定兩小題作答,并在答題卡上把所選題目對應字母后的方框涂滿涂黑.如都作答,則按A、B兩小題評分.)

A.(選修模塊3-3)(12分)

(1)下列說法中正確的是  ▲ 

A.液體表面層分子間距離大于液體內部分子間距離,液體表面存在張力

B.擴散運動就是布朗運動

C.蔗糖受潮后會粘在一起,沒有確定的幾何形狀,它是非晶體

D.對任何一類與熱現象有關的宏觀自然過程進行方向的說明,都可以作為熱力學第二定律的表述

(2)將1ml的純油酸加到500ml的酒精中,待均勻溶解后,用滴管取1ml油酸酒精溶液,讓其自然滴出,共200滴.現在讓其中一滴落到盛水的淺盤內,待油膜充分展開后,測得油膜的面積為200cm2,則估算油酸分子的大小是  ▲  m(保留一位有效數字).

(3)如圖所示,一直立的汽缸用一質量為m的活塞封閉一定量的理想氣體,活塞橫截面積為S,汽缸內壁光滑且缸壁是導熱的,開始活塞被固定,打開固定螺栓K,活塞下落,經過足夠長時間后,活塞停在B點,已知AB=h,大氣壓強為p0,重力加速度為g

①求活塞停在B點時缸內封閉氣體的壓強;

②設周圍環(huán)境溫度保持不變,求整個過程中通過缸壁傳遞的熱量Q(一定量理想氣體的內能僅由溫度決定).

B.(選修模塊3-4)(12分)

(1)下列說法中正確的是  ▲ 

A.照相機、攝影機鏡頭表面涂有增透膜,利用了光的干涉原理

B.光照射遮擋物形成的影輪廓模糊,是光的衍射現象

C.太陽光是偏振光

D.為了有效地發(fā)射電磁波,應該采用長波發(fā)射

(2)甲、乙兩人站在地面上時身高都是L0, 甲、乙分別乘坐速度為0.6c和0.8cc為光速)的飛船同向運動,如圖所示.此時乙觀察到甲的身高L  ▲  L0;若甲向乙揮手,動作時間為t0,乙觀察到甲動作時間為t1,則t1  ▲  t0(均選填“>”、“ =” 或“<”).

(3)x=0的質點在t=0時刻開始振動,產生的波沿x軸正方向傳播,t1=0.14s時刻波的圖象如圖所示,質點A剛好開始振動.

①求波在介質中的傳播速度;

②求x=4m的質點在0.14s內運動的路程.

   C.(選修模塊3-5)(12分)

(1)下列說法中正確的是  ▲ 

A.康普頓效應進一步證實了光的波動特性

B.為了解釋黑體輻射規(guī)律,普朗克提出電磁輻射的能量是量子化的

C.經典物理學不能解釋原子的穩(wěn)定性和原子光譜的分立特征

D.天然放射性元素衰變的快慢與化學、物理狀態(tài)有關

(2)是不穩(wěn)定的,能自發(fā)的發(fā)生衰變.

①完成衰變反應方程    ▲ 

衰變?yōu)?img width=40 height=25 src="http://thumb.zyjl.cn/pic1/1899/wl/3/40403.gif" >,經過  ▲  α衰變,  ▲  β衰變.

(3)1919年,盧瑟福用α粒子轟擊氮核發(fā)現質子.科學研究表明其核反應過程是:α粒子轟擊靜止的氮核后形成了不穩(wěn)定的復核,復核發(fā)生衰變放出質子,變成氧核.設α粒子質量為m1,初速度為v0,氮核質量為m2,質子質量為m0, 氧核的質量為m3,不考慮相對論效應.

α粒子轟擊氮核形成不穩(wěn)定復核的瞬間,復核的速度為多大?

②求此過程中釋放的核能.

四、計算題:本題共3小題,共計47分.解答時請寫出必要的文字說明、方程式和重要的演算步驟,只寫出最后答案的不能得分,有數值計算的題,答案中必須明確寫出數值和單位.

13.如圖所示,一質量為m的氫氣球用細繩拴在地面上,地面上空風速水平且恒為v0,球靜止時繩與水平方向夾角為α.某時刻繩突然斷裂,氫氣球飛走.已知氫氣球在空氣中運動時所受到的阻力f正比于其相對空氣的速度v,可以表示為f=kvk為已知的常數).則

(1)氫氣球受到的浮力為多大?

(2)繩斷裂瞬間,氫氣球加速度為多大?

(3)一段時間后氫氣球在空中做勻速直線運動,其水平方向上的速度與風速v0相等,求此時氣球速度大小(設空氣密度不發(fā)生變化,重力加速度為g).

 


14.如圖所示,光滑絕緣水平面上放置一均勻導體制成的正方形線框abcd,線框質量為m,電阻為R,邊長為L.有一方向豎直向下的有界磁場,磁場的磁感應強度為B,磁場區(qū)寬度大于L,左邊界與ab邊平行.線框在水平向右的拉力作用下垂直于邊界線穿過磁場區(qū).

(1)若線框以速度v勻速穿過磁場區(qū),求線框在離開磁場時ab兩點間的電勢差;

(2)若線框從靜止開始以恒定的加速度a運動,經過t1時間ab邊開始進入磁場,求cd邊將要進入磁場時刻回路的電功率;

(3)若線框以初速度v0進入磁場,且拉力的功率恒為P0.經過時間Tcd邊進入磁場,此過程中回路產生的電熱為Q.后來ab邊剛穿出磁場時,線框速度也為v0,求線框穿過磁場所用的時間t

      

15.如圖所示,有界勻強磁場的磁感應強度為B,方向垂直紙面向里,MN為其左邊界,磁場中放置一半徑為R的圓柱形金屬圓筒,圓心OMN的距離OO1=2R,圓筒軸線與磁場平行.圓筒用導線通過一個電阻r0接地,最初金屬圓筒不帶電.現有范圍足夠大的平行電子束以速度v0從很遠處沿垂直于左邊界MN向右射入磁場區(qū),已知電子質量為m,電量為e

(1)若電子初速度滿足,則在最初圓筒上沒有帶電時,能夠打到圓筒上的電子對應MN邊界上O1兩側的范圍是多大?

(2)當圓筒上電量達到相對穩(wěn)定時,測量得到通過電阻r0的電流恒為I,忽略運動電子間的相互作用,求此時金屬圓筒的電勢φ和電子到達圓筒時速度v(取無窮遠處或大地電勢為零).

(3)在(2)的情況下,求金屬圓筒的發(fā)熱功率.

 


查看答案和解析>>

第一部分  力&物體的平衡

第一講 力的處理

一、矢量的運算

1、加法

表達: +  =  。

名詞:為“和矢量”。

法則:平行四邊形法則。如圖1所示。

和矢量大。篶 =  ,其中α為的夾角。

和矢量方向:、之間,和夾角β= arcsin

2、減法

表達: =  。

名詞:為“被減數矢量”,為“減數矢量”,為“差矢量”。

法則:三角形法則。如圖2所示。將被減數矢量和減數矢量的起始端平移到一點,然后連接兩時量末端,指向被減數時量的時量,即是差矢量。

差矢量大。篴 =  ,其中θ為的夾角。

差矢量的方向可以用正弦定理求得。

一條直線上的矢量運算是平行四邊形和三角形法則的特例。

例題:已知質點做勻速率圓周運動,半徑為R ,周期為T ,求它在T內和在T內的平均加速度大小。

解說:如圖3所示,A到B點對應T的過程,A到C點對應T的過程。這三點的速度矢量分別設為、。

根據加速度的定義 得:,

由于有兩處涉及矢量減法,設兩個差矢量  , ,根據三角形法則,它們在圖3中的大小、方向已繪出(的“三角形”已被拉伸成一條直線)。

本題只關心各矢量的大小,顯然:

 =  =  =  ,且: =   = 2

所以: =  =  , =  =  。

(學生活動)觀察與思考:這兩個加速度是否相等,勻速率圓周運動是不是勻變速運動?

答:否;不是。

3、乘法

矢量的乘法有兩種:叉乘和點乘,和代數的乘法有著質的不同。

⑴ 叉乘

表達:× = 

名詞:稱“矢量的叉積”,它是一個新的矢量。

叉積的大。篶 = absinα,其中α為的夾角。意義:的大小對應由作成的平行四邊形的面積。

叉積的方向:垂直確定的平面,并由右手螺旋定則確定方向,如圖4所示。

顯然,××,但有:×= -×

⑵ 點乘

表達:· = c

名詞:c稱“矢量的點積”,它不再是一個矢量,而是一個標量。

點積的大。篶 = abcosα,其中α為的夾角。

二、共點力的合成

1、平行四邊形法則與矢量表達式

2、一般平行四邊形的合力與分力的求法

余弦定理(或分割成RtΔ)解合力的大小

正弦定理解方向

三、力的分解

1、按效果分解

2、按需要——正交分解

第二講 物體的平衡

一、共點力平衡

1、特征:質心無加速度。

2、條件:Σ = 0 ,或  = 0 , = 0

例題:如圖5所示,長為L 、粗細不均勻的橫桿被兩根輕繩水平懸掛,繩子與水平方向的夾角在圖上已標示,求橫桿的重心位置。

解說:直接用三力共點的知識解題,幾何關系比較簡單。

答案:距棒的左端L/4處。

(學生活動)思考:放在斜面上的均質長方體,按實際情況分析受力,斜面的支持力會通過長方體的重心嗎?

解:將各處的支持力歸納成一個N ,則長方體受三個力(G 、f 、N)必共點,由此推知,N不可能通過長方體的重心。正確受力情形如圖6所示(通常的受力圖是將受力物體看成一個點,這時,N就過重心了)。

答:不會。

二、轉動平衡

1、特征:物體無轉動加速度。

2、條件:Σ= 0 ,或ΣM+ =ΣM- 

如果物體靜止,肯定會同時滿足兩種平衡,因此用兩種思路均可解題。

3、非共點力的合成

大小和方向:遵從一條直線矢量合成法則。

作用點:先假定一個等效作用點,然后讓所有的平行力對這個作用點的和力矩為零。

第三講 習題課

1、如圖7所示,在固定的、傾角為α斜面上,有一塊可以轉動的夾板(β不定),夾板和斜面夾著一個質量為m的光滑均質球體,試求:β取何值時,夾板對球的彈力最小。

解說:法一,平行四邊形動態(tài)處理。

對球體進行受力分析,然后對平行四邊形中的矢量G和N1進行平移,使它們構成一個三角形,如圖8的左圖和中圖所示。

由于G的大小和方向均不變,而N1的方向不可變,當β增大導致N2的方向改變時,N2的變化和N1的方向變化如圖8的右圖所示。

顯然,隨著β增大,N1單調減小,而N2的大小先減小后增大,當N2垂直N1時,N2取極小值,且N2min = Gsinα。

法二,函數法。

看圖8的中間圖,對這個三角形用正弦定理,有:

 =  ,即:N2 =  ,β在0到180°之間取值,N2的極值討論是很容易的。

答案:當β= 90°時,甲板的彈力最小。

2、把一個重為G的物體用一個水平推力F壓在豎直的足夠高的墻壁上,F隨時間t的變化規(guī)律如圖9所示,則在t = 0開始物體所受的摩擦力f的變化圖線是圖10中的哪一個?

解說:靜力學旨在解決靜態(tài)問題和準靜態(tài)過程的問題,但本題是一個例外。物體在豎直方向的運動先加速后減速,平衡方程不再適用。如何避開牛頓第二定律,是本題授課時的難點。

靜力學的知識,本題在于區(qū)分兩種摩擦的不同判據。

水平方向合力為零,得:支持力N持續(xù)增大。

物體在運動時,滑動摩擦力f = μN ,必持續(xù)增大。但物體在靜止后靜摩擦力f′≡ G ,與N沒有關系。

對運動過程加以分析,物體必有加速和減速兩個過程。據物理常識,加速時,f < G ,而在減速時f > G 。

答案:B 。

3、如圖11所示,一個重量為G的小球套在豎直放置的、半徑為R的光滑大環(huán)上,另一輕質彈簧的勁度系數為k ,自由長度為L(L<2R),一端固定在大圓環(huán)的頂點A ,另一端與小球相連。環(huán)靜止平衡時位于大環(huán)上的B點。試求彈簧與豎直方向的夾角θ。

解說:平行四邊形的三個矢量總是可以平移到一個三角形中去討論,解三角形的典型思路有三種:①分割成直角三角形(或本來就是直角三角形);②利用正、余弦定理;③利用力學矢量三角形和某空間位置三角形相似。本題旨在貫徹第三種思路。

分析小球受力→矢量平移,如圖12所示,其中F表示彈簧彈力,N表示大環(huán)的支持力。

(學生活動)思考:支持力N可不可以沿圖12中的反方向?(正交分解看水平方向平衡——不可以。)

容易判斷,圖中的灰色矢量三角形和空間位置三角形ΔAOB是相似的,所以:

                                   ⑴

由胡克定律:F = k(- R)                ⑵

幾何關系:= 2Rcosθ                     ⑶

解以上三式即可。

答案:arccos 。

(學生活動)思考:若將彈簧換成勁度系數k′較大的彈簧,其它條件不變,則彈簧彈力怎么變?環(huán)的支持力怎么變?

答:變;不變。

(學生活動)反饋練習:光滑半球固定在水平面上,球心O的正上方有一定滑輪,一根輕繩跨過滑輪將一小球從圖13所示的A位置開始緩慢拉至B位置。試判斷:在此過程中,繩子的拉力T和球面支持力N怎樣變化?

解:和上題完全相同。

答:T變小,N不變。

4、如圖14所示,一個半徑為R的非均質圓球,其重心不在球心O點,先將它置于水平地面上,平衡時球面上的A點和地面接觸;再將它置于傾角為30°的粗糙斜面上,平衡時球面上的B點與斜面接觸,已知A到B的圓心角也為30°。試求球體的重心C到球心O的距離。

解說:練習三力共點的應用。

根據在平面上的平衡,可知重心C在OA連線上。根據在斜面上的平衡,支持力、重力和靜摩擦力共點,可以畫出重心的具體位置。幾何計算比較簡單。

答案:R 。

(學生活動)反饋練習:靜摩擦足夠,將長為a 、厚為b的磚塊碼在傾角為θ的斜面上,最多能碼多少塊?

解:三力共點知識應用。

答: 。

4、兩根等長的細線,一端拴在同一懸點O上,另一端各系一個小球,兩球的質量分別為m1和m2 ,已知兩球間存在大小相等、方向相反的斥力而使兩線張開一定角度,分別為45和30°,如圖15所示。則m1 : m2??為多少?

解說:本題考查正弦定理、或力矩平衡解靜力學問題。

對兩球進行受力分析,并進行矢量平移,如圖16所示。

首先注意,圖16中的灰色三角形是等腰三角形,兩底角相等,設為α。

而且,兩球相互作用的斥力方向相反,大小相等,可用同一字母表示,設為F 。

對左邊的矢量三角形用正弦定理,有:

 =          ①

同理,對右邊的矢量三角形,有: =                                ②

解①②兩式即可。

答案:1 : 。

(學生活動)思考:解本題是否還有其它的方法?

答:有——將模型看成用輕桿連成的兩小球,而將O點看成轉軸,兩球的重力對O的力矩必然是平衡的。這種方法更直接、簡便。

應用:若原題中繩長不等,而是l1 :l2 = 3 :2 ,其它條件不變,m1與m2的比值又將是多少?

解:此時用共點力平衡更加復雜(多一個正弦定理方程),而用力矩平衡則幾乎和“思考”完全相同。

答:2 :3 。

5、如圖17所示,一個半徑為R的均質金屬球上固定著一根長為L的輕質細桿,細桿的左端用鉸鏈與墻壁相連,球下邊墊上一塊木板后,細桿恰好水平,而木板下面是光滑的水平面。由于金屬球和木板之間有摩擦(已知摩擦因素為μ),所以要將木板從球下面向右抽出時,至少需要大小為F的水平拉力。試問:現要將木板繼續(xù)向左插進一些,至少需要多大的水平推力?

解說:這是一個典型的力矩平衡的例題。

以球和桿為對象,研究其對轉軸O的轉動平衡,設木板拉出時給球體的摩擦力為f ,支持力為N ,重力為G ,力矩平衡方程為:

f R + N(R + L)= G(R + L)           

球和板已相對滑動,故:f = μN        ②

解①②可得:f = 

再看木板的平衡,F = f 。

同理,木板插進去時,球體和木板之間的摩擦f′=  = F′。

答案: 

第四講 摩擦角及其它

一、摩擦角

1、全反力:接觸面給物體的摩擦力與支持力的合力稱全反力,一般用R表示,亦稱接觸反力。

2、摩擦角:全反力與支持力的最大夾角稱摩擦角,一般用φm表示。

此時,要么物體已經滑動,必有:φm = arctgμ(μ為動摩擦因素),稱動摩擦力角;要么物體達到最大運動趨勢,必有:φms = arctgμs(μs為靜摩擦因素),稱靜摩擦角。通常處理為φm = φms 。

3、引入全反力和摩擦角的意義:使分析處理物體受力時更方便、更簡捷。

二、隔離法與整體法

1、隔離法:當物體對象有兩個或兩個以上時,有必要各個擊破,逐個講每個個體隔離開來分析處理,稱隔離法。

在處理各隔離方程之間的聯(lián)系時,應注意相互作用力的大小和方向關系。

2、整體法:當各個體均處于平衡狀態(tài)時,我們可以不顧個體的差異而講多個對象看成一個整體進行分析處理,稱整體法。

應用整體法時應注意“系統(tǒng)”、“內力”和“外力”的涵義。

三、應用

1、物體放在水平面上,用與水平方向成30°的力拉物體時,物體勻速前進。若此力大小不變,改為沿水平方向拉物體,物體仍能勻速前進,求物體與水平面之間的動摩擦因素μ。

解說:這是一個能顯示摩擦角解題優(yōu)越性的題目?梢酝ㄟ^不同解法的比較讓學生留下深刻印象。

法一,正交分解。(學生分析受力→列方程→得結果。)

法二,用摩擦角解題。

引進全反力R ,對物體兩個平衡狀態(tài)進行受力分析,再進行矢量平移,得到圖18中的左圖和中間圖(注意:重力G是不變的,而全反力R的方向不變、F的大小不變),φm指摩擦角。

再將兩圖重疊成圖18的右圖。由于灰色的三角形是一個頂角為30°的等腰三角形,其頂角的角平分線必垂直底邊……故有:φm = 15°。

最后,μ= tgφm 。

答案:0.268 。

(學生活動)思考:如果F的大小是可以選擇的,那么能維持物體勻速前進的最小F值是多少?

解:見圖18,右圖中虛線的長度即Fmin ,所以,Fmin = Gsinφm 。

答:Gsin15°(其中G為物體的重量)。

2、如圖19所示,質量m = 5kg的物體置于一粗糙斜面上,并用一平行斜面的、大小F = 30N的推力推物體,使物體能夠沿斜面向上勻速運動,而斜面體始終靜止。已知斜面的質量M = 10kg ,傾角為30°,重力加速度g = 10m/s2 ,求地面對斜面體的摩擦力大小。

解說:

本題旨在顯示整體法的解題的優(yōu)越性。

法一,隔離法。簡要介紹……

法二,整體法。注意,滑塊和斜面隨有相對運動,但從平衡的角度看,它們是完全等價的,可以看成一個整體。

做整體的受力分析時,內力不加考慮。受力分析比較簡單,列水平方向平衡方程很容易解地面摩擦力。

答案:26.0N 。

(學生活動)地面給斜面體的支持力是多少?

解:略。

答:135N 。

應用:如圖20所示,一上表面粗糙的斜面體上放在光滑的水平地面上,斜面的傾角為θ。另一質量為m的滑塊恰好能沿斜面勻速下滑。若用一推力F作用在滑塊上,使之能沿斜面勻速上滑,且要求斜面體靜止不動,就必須施加一個大小為P = 4mgsinθcosθ的水平推力作用于斜面體。使?jié)M足題意的這個F的大小和方向。

解說:這是一道難度較大的靜力學題,可以動用一切可能的工具解題。

法一:隔離法。

由第一個物理情景易得,斜面于滑塊的摩擦因素μ= tgθ

對第二個物理情景,分別隔離滑塊和斜面體分析受力,并將F沿斜面、垂直斜面分解成Fx和Fy ,滑塊與斜面之間的兩對相互作用力只用兩個字母表示(N表示正壓力和彈力,f表示摩擦力),如圖21所示。

對滑塊,我們可以考查沿斜面方向和垂直斜面方向的平衡——

Fx = f + mgsinθ

Fy + mgcosθ= N

且 f = μN = Ntgθ

綜合以上三式得到:

Fx = Fytgθ+ 2mgsinθ               ①

對斜面體,只看水平方向平衡就行了——

P = fcosθ+ Nsinθ

即:4mgsinθcosθ=μNcosθ+ Nsinθ

代入μ值,化簡得:Fy = mgcosθ      ②

②代入①可得:Fx = 3mgsinθ

最后由F =解F的大小,由tgα= 解F的方向(設α為F和斜面的夾角)。

答案:大小為F = mg,方向和斜面夾角α= arctg()指向斜面內部。

法二:引入摩擦角和整體法觀念。

仍然沿用“法一”中關于F的方向設置(見圖21中的α角)。

先看整體的水平方向平衡,有:Fcos(θ- α) = P                                   ⑴

再隔離滑塊,分析受力時引進全反力R和摩擦角φ,由于簡化后只有三個力(R、mg和F),可以將矢量平移后構成一個三角形,如圖22所示。

在圖22右邊的矢量三角形中,有: =      ⑵

注意:φ= arctgμ= arctg(tgθ) = θ                                              ⑶

解⑴⑵⑶式可得F和α的值。

查看答案和解析>>

第二部分  牛頓運動定律

第一講 牛頓三定律

一、牛頓第一定律

1、定律。慣性的量度

2、觀念意義,突破“初態(tài)困惑”

二、牛頓第二定律

1、定律

2、理解要點

a、矢量性

b、獨立作用性:ΣF → a ,ΣFx → ax 

c、瞬時性。合力可突變,故加速度可突變(與之對比:速度和位移不可突變);牛頓第二定律展示了加速度的決定式(加速度的定義式僅僅展示了加速度的“測量手段”)。

3、適用條件

a、宏觀、低速

b、慣性系

對于非慣性系的定律修正——引入慣性力、參與受力分析

三、牛頓第三定律

1、定律

2、理解要點

a、同性質(但不同物體)

b、等時效(同增同減)

c、無條件(與運動狀態(tài)、空間選擇無關)

第二講 牛頓定律的應用

一、牛頓第一、第二定律的應用

單獨應用牛頓第一定律的物理問題比較少,一般是需要用其解決物理問題中的某一個環(huán)節(jié)。

應用要點:合力為零時,物體靠慣性維持原有運動狀態(tài);只有物體有加速度時才需要合力。有質量的物體才有慣性。a可以突變而v、s不可突變。

1、如圖1所示,在馬達的驅動下,皮帶運輸機上方的皮帶以恒定的速度向右運動,F將一工件(大小不計)在皮帶左端A點輕輕放下,則在此后的過程中(      

A、一段時間內,工件將在滑動摩擦力作用下,對地做加速運動

B、當工件的速度等于v時,它與皮帶之間的摩擦力變?yōu)殪o摩擦力

C、當工件相對皮帶靜止時,它位于皮帶上A點右側的某一點

D、工件在皮帶上有可能不存在與皮帶相對靜止的狀態(tài)

解說:B選項需要用到牛頓第一定律,A、C、D選項用到牛頓第二定律。

較難突破的是A選項,在為什么不會“立即跟上皮帶”的問題上,建議使用反證法(t → 0 ,a →  ,則ΣFx   ,必然會出現“供不應求”的局面)和比較法(為什么人跳上速度不大的物體可以不發(fā)生相對滑動?因為人是可以形變、重心可以調節(jié)的特殊“物體”)

此外,本題的D選項還要用到勻變速運動規(guī)律。用勻變速運動規(guī)律和牛頓第二定律不難得出

只有當L > 時(其中μ為工件與皮帶之間的動摩擦因素),才有相對靜止的過程,否則沒有。

答案:A、D

思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,試求工件到達皮帶右端的時間t(過程略,答案為5.5s)

進階練習:在上面“思考”題中,將工件給予一水平向右的初速v0 ,其它條件不變,再求t(學生分以下三組進行)——

① v0 = 1m/s  (答:0.5 + 37/8 = 5.13s)

② v0 = 4m/s  (答:1.0 + 3.5 = 4.5s)

③ v0 = 1m/s  (答:1.55s)

2、質量均為m的兩只鉤碼A和B,用輕彈簧和輕繩連接,然后掛在天花板上,如圖2所示。試問:

① 如果在P處剪斷細繩,在剪斷瞬時,B的加速度是多少?

② 如果在Q處剪斷彈簧,在剪斷瞬時,B的加速度又是多少?

解說:第①問是常規(guī)處理。由于“彈簧不會立即發(fā)生形變”,故剪斷瞬間彈簧彈力維持原值,所以此時B鉤碼的加速度為零(A的加速度則為2g)。

第②問需要我們反省這樣一個問題:“彈簧不會立即發(fā)生形變”的原因是什么?是A、B兩物的慣性,且速度v和位移s不能突變。但在Q點剪斷彈簧時,彈簧卻是沒有慣性的(沒有質量),遵從理想模型的條件,彈簧應在一瞬間恢復原長!即彈簧彈力突變?yōu)榱恪?/p>

答案:0 ;g 。

二、牛頓第二定律的應用

應用要點:受力較少時,直接應用牛頓第二定律的“矢量性”解題。受力比較多時,結合正交分解與“獨立作用性”解題。

在難度方面,“瞬時性”問題相對較大。

1、滑塊在固定、光滑、傾角為θ的斜面上下滑,試求其加速度。

解說:受力分析 → 根據“矢量性”定合力方向  牛頓第二定律應用

答案:gsinθ。

思考:如果斜面解除固定,上表仍光滑,傾角仍為θ,要求滑塊與斜面相對靜止,斜面應具備一個多大的水平加速度?(解題思路完全相同,研究對象仍為滑塊。但在第二環(huán)節(jié)上應注意區(qū)別。答:gtgθ。)

進階練習1:在一向右運動的車廂中,用細繩懸掛的小球呈現如圖3所示的穩(wěn)定狀態(tài),試求車廂的加速度。(和“思考”題同理,答:gtgθ。)

進階練習2、如圖4所示,小車在傾角為α的斜面上勻加速運動,車廂頂用細繩懸掛一小球,發(fā)現懸繩與豎直方向形成一個穩(wěn)定的夾角β。試求小車的加速度。

解:繼續(xù)貫徹“矢量性”的應用,但數學處理復雜了一些(正弦定理解三角形)。

分析小球受力后,根據“矢量性”我們可以做如圖5所示的平行四邊形,并找到相應的夾角。設張力T與斜面方向的夾角為θ,則

θ=(90°+ α)- β= 90°-(β-α)                 (1)

對灰色三角形用正弦定理,有

 =                                        (2)

解(1)(2)兩式得:ΣF = 

最后運用牛頓第二定律即可求小球加速度(即小車加速度)

答: 。

2、如圖6所示,光滑斜面傾角為θ,在水平地面上加速運動。斜面上用一條與斜面平行的細繩系一質量為m的小球,當斜面加速度為a時(a<ctgθ),小球能夠保持相對斜面靜止。試求此時繩子的張力T 。

解說:當力的個數較多,不能直接用平行四邊形尋求合力時,宜用正交分解處理受力,在對應牛頓第二定律的“獨立作用性”列方程。

正交坐標的選擇,視解題方便程度而定。

解法一:先介紹一般的思路。沿加速度a方向建x軸,與a垂直的方向上建y軸,如圖7所示(N為斜面支持力)。于是可得兩方程

ΣFx = ma ,即Tx - Nx = ma

ΣFy = 0 , 即Ty + Ny = mg

代入方位角θ,以上兩式成為

T cosθ-N sinθ = ma                       (1)

T sinθ + Ncosθ = mg                       (2)

這是一個關于T和N的方程組,解(1)(2)兩式得:T = mgsinθ + ma cosθ

解法二:下面嘗試一下能否獨立地解張力T 。將正交分解的坐標選擇為:x——斜面方向,y——和斜面垂直的方向。這時,在分解受力時,只分解重力G就行了,但值得注意,加速度a不在任何一個坐標軸上,是需要分解的。矢量分解后,如圖8所示。

根據獨立作用性原理,ΣFx = max

即:T - Gx = max

即:T - mg sinθ = m acosθ

顯然,獨立解T值是成功的。結果與解法一相同。

答案:mgsinθ + ma cosθ

思考:當a>ctgθ時,張力T的結果會變化嗎?(從支持力的結果N = mgcosθ-ma sinθ看小球脫離斜面的條件,求脫離斜面后,θ條件已沒有意義。答:T = m 。)

學生活動:用正交分解法解本節(jié)第2題“進階練習2”

進階練習:如圖9所示,自動扶梯與地面的夾角為30°,但扶梯的臺階是水平的。當扶梯以a = 4m/s2的加速度向上運動時,站在扶梯上質量為60kg的人相對扶梯靜止。重力加速度g = 10 m/s2,試求扶梯對人的靜摩擦力f 。

解:這是一個展示獨立作用性原理的經典例題,建議學生選擇兩種坐標(一種是沿a方向和垂直a方向,另一種是水平和豎直方向),對比解題過程,進而充分領會用牛頓第二定律解題的靈活性。

答:208N 。

3、如圖10所示,甲圖系著小球的是兩根輕繩,乙圖系著小球的是一根輕彈簧和輕繩,方位角θ已知,F將它們的水平繩剪斷,試求:在剪斷瞬間,兩種情形下小球的瞬時加速度。

解說:第一步,闡明繩子彈力和彈簧彈力的區(qū)別。

(學生活動)思考:用豎直的繩和彈簧懸吊小球,并用豎直向下的力拉住小球靜止,然后同時釋放,會有什么現象?原因是什么?

結論——繩子的彈力可以突變而彈簧的彈力不能突變(胡克定律)。

第二步,在本例中,突破“繩子的拉力如何瞬時調節(jié)”這一難點(從即將開始的運動來反推)。

知識點,牛頓第二定律的瞬時性。

答案:a = gsinθ ;a = gtgθ 。

應用:如圖11所示,吊籃P掛在天花板上,與吊籃質量相等的物體Q被固定在吊籃中的輕彈簧托住,當懸掛吊籃的細繩被燒斷瞬間,P、Q的加速度分別是多少?

解:略。

答:2g ;0 。

三、牛頓第二、第三定律的應用

要點:在動力學問題中,如果遇到幾個研究對象時,就會面臨如何處理對象之間的力和對象與外界之間的力問題,這時有必要引進“系統(tǒng)”、“內力”和“外力”等概念,并適時地運用牛頓第三定律。

在方法的選擇方面,則有“隔離法”和“整體法”。前者是根本,后者有局限,也有難度,但常常使解題過程簡化,使過程的物理意義更加明晰。

對N個對象,有N個隔離方程和一個(可能的)整體方程,這(N + 1)個方程中必有一個是通解方程,如何取舍,視解題方便程度而定。

補充:當多個對象不具有共同的加速度時,一般來講,整體法不可用,但也有一種特殊的“整體方程”,可以不受這個局限(可以介紹推導過程)——

Σ= m1 + m2 + m3 + … + mn

其中Σ只能是系統(tǒng)外力的矢量和,等式右邊也是矢量相加。

1、如圖12所示,光滑水平面上放著一個長為L的均質直棒,現給棒一個沿棒方向的、大小為F的水平恒力作用,則棒中各部位的張力T隨圖中x的關系怎樣?

解說:截取隔離對象,列整體方程和隔離方程(隔離右段較好)。

答案:N = x 。

思考:如果水平面粗糙,結論又如何?

解:分兩種情況,(1)能拉動;(2)不能拉動。

第(1)情況的計算和原題基本相同,只是多了一個摩擦力的處理,結論的化簡也麻煩一些。

第(2)情況可設棒的總質量為M ,和水平面的摩擦因素為μ,而F = μMg ,其中l(wèi)<L ,則x<(L-l)的右段沒有張力,x>(L-l)的左端才有張力。

答:若棒仍能被拉動,結論不變。

若棒不能被拉動,且F = μMg時(μ為棒與平面的摩擦因素,l為小于L的某一值,M為棒的總質量),當x<(L-l),N≡0 ;當x>(L-l),N = 〔x -〈L-l〉〕。

應用:如圖13所示,在傾角為θ的固定斜面上,疊放著兩個長方體滑塊,它們的質量分別為m1和m2 ,它們之間的摩擦因素、和斜面的摩擦因素分別為μ1和μ2 ,系統(tǒng)釋放后能夠一起加速下滑,則它們之間的摩擦力大小為:

A、μ1 m1gcosθ ;    B、μ2 m1gcosθ ;

C、μ1 m2gcosθ ;    D、μ1 m2gcosθ ;

解:略。

答:B 。(方向沿斜面向上。)

思考:(1)如果兩滑塊不是下滑,而是以初速度v0一起上沖,以上結論會變嗎?(2)如果斜面光滑,兩滑塊之間有沒有摩擦力?(3)如果將下面的滑塊換成如圖14所示的盒子,上面的滑塊換成小球,它們以初速度v0一起上沖,球應對盒子的哪一側內壁有壓力?

解:略。

答:(1)不會;(2)沒有;(3)若斜面光滑,對兩內壁均無壓力,若斜面粗糙,對斜面上方的內壁有壓力。

2、如圖15所示,三個物體質量分別為m1 、m2和m3 ,帶滑輪的物體放在光滑水平面上,滑輪和所有接觸面的摩擦均不計,繩子的質量也不計,為使三個物體無相對滑動,水平推力F應為多少?

解說:

此題對象雖然有三個,但難度不大。隔離m2 ,豎直方向有一個平衡方程;隔離m1 ,水平方向有一個動力學方程;整體有一個動力學方程。就足以解題了。

答案:F =  。

思考:若將質量為m3物體右邊挖成凹形,讓m2可以自由擺動(而不與m3相碰),如圖16所示,其它條件不變。是否可以選擇一個恰當的F′,使三者無相對運動?如果沒有,說明理由;如果有,求出這個F′的值。

解:此時,m2的隔離方程將較為復雜。設繩子張力為T ,m2的受力情況如圖,隔離方程為:

 = m2a

隔離m,仍有:T = m1a

解以上兩式,可得:a = g

最后用整體法解F即可。

答:當m1 ≤ m2時,沒有適應題意的F′;當m1 > m2時,適應題意的F′=  。

3、一根質量為M的木棒,上端用細繩系在天花板上,棒上有一質量為m的貓,如圖17所示,F將系木棒的繩子剪斷,同時貓相對棒往上爬,但要求貓對地的高度不變,則棒的加速度將是多少?

解說:法一,隔離法。需要設出貓爪抓棒的力f ,然后列貓的平衡方程和棒的動力學方程,解方程組即可。

法二,“新整體法”。

據Σ= m1 + m2 + m3 + … + mn ,貓和棒的系統(tǒng)外力只有兩者的重力,豎直向下,而貓的加速度a1 = 0 ,所以:

( M + m )g = m·0 + M a1 

解棒的加速度a1十分容易。

答案:g 。

四、特殊的連接體

當系統(tǒng)中各個體的加速度不相等時,經典的整體法不可用。如果各個體的加速度不在一條直線上,“新整體法”也將有一定的困難(矢量求和不易)。此時,我們回到隔離法,且要更加注意找各參量之間的聯(lián)系。

解題思想:抓某個方向上加速度關系。方法:“微元法”先看位移關系,再推加速度關系。、

1、如圖18所示,一質量為M 、傾角為θ的光滑斜面,放置在光滑的水平面上,另一個質量為m的滑塊從斜面頂端釋放,試求斜面的加速度。

解說:本題涉及兩個物體,它們的加速度關系復雜,但在垂直斜面方向上,大小是相等的。對兩者列隔離方程時,務必在這個方向上進行突破。

(學生活動)定型判斷斜面的運動情況、滑塊的運動情況。

位移矢量示意圖如圖19所示。根據運動學規(guī)律,加速度矢量a1和a2也具有這樣的關系。

(學生活動)這兩個加速度矢量有什么關系?

沿斜面方向、垂直斜面方向建x 、y坐標,可得:

a1y = a2y             ①

且:a1y = a2sinθ     ②

隔離滑塊和斜面,受力圖如圖20所示。

對滑塊,列y方向隔離方程,有:

mgcosθ- N = ma1y     ③

對斜面,仍沿合加速度a2方向列方程,有:

Nsinθ= Ma2          ④

解①②③④式即可得a2 。

答案:a2 =  。

(學生活動)思考:如何求a1的值?

解:a1y已可以通過解上面的方程組求出;a1x只要看滑塊的受力圖,列x方向的隔離方程即可,顯然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后據a1 = 求a1 。

答:a1 =  。

2、如圖21所示,與水平面成θ角的AB棒上有一滑套C ,可以無摩擦地在棒上滑動,開始時與棒的A端相距b ,相對棒靜止。當棒保持傾角θ不變地沿水平面勻加速運動,加速度為a(且a>gtgθ)時,求滑套C從棒的A端滑出所經歷的時間。

解說:這是一個比較特殊的“連接體問題”,尋求運動學參量的關系似乎比動力學分析更加重要。動力學方面,只需要隔離滑套C就行了。

(學生活動)思考:為什么題意要求a>gtgθ?(聯(lián)系本講第二節(jié)第1題之“思考題”)

定性繪出符合題意的運動過程圖,如圖22所示:S表示棒的位移,S1表示滑套的位移。沿棒與垂直棒建直角坐標后,S1x表示S1在x方向上的分量。不難看出:

S1x + b = S cosθ                   ①

設全程時間為t ,則有:

S = at2                          ②

S1x = a1xt2                        ③

而隔離滑套,受力圖如圖23所示,顯然:

mgsinθ= ma1x                       ④

解①②③④式即可。

答案:t = 

另解:如果引進動力學在非慣性系中的修正式 Σ* = m (注:*為慣性力),此題極簡單。過程如下——

以棒為參照,隔離滑套,分析受力,如圖24所示。

注意,滑套相對棒的加速度a是沿棒向上的,故動力學方程為:

F*cosθ- mgsinθ= ma            (1)

其中F* = ma                      (2)

而且,以棒為參照,滑套的相對位移S就是b ,即:

b = S = a t2                 (3)

解(1)(2)(3)式就可以了。

第二講 配套例題選講

教材范本:龔霞玲主編《奧林匹克物理思維訓練教材》,知識出版社,2002年8月第一版。

例題選講針對“教材”第三章的部分例題和習題。

查看答案和解析>>


同步練習冊答案