題目列表(包括答案和解析)
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù)和,不等式恒成立,試求實(shí)數(shù)的取值范圍.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B錯(cuò);+==≥4,故A錯(cuò);由基本不等式得≤=,即+≤,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D錯(cuò).故選C.
.定義域?yàn)?/span>R的函數(shù)滿足,且當(dāng)時(shí),,則當(dāng)時(shí),的最小值為( )
(A) (B) (C) (D)
.過(guò)點(diǎn)作圓的弦,其中弦長(zhǎng)為整數(shù)的共有 ( 。
A.16條 B. 17條 C. 32條 D. 34條
一、選擇題:(每小題5分,共50分)
題號(hào)
1
2
3
4
5
6
7
8
9
10
答案
B
D
B
A
C
C
C
A
A
B
二、填空題:(每小題4分,共24分)
11. 12.4 13. 14. 15.4 16.
三、解答題:(共76分,以下各題為累計(jì)得分,其他解答請(qǐng)相應(yīng)給分)
17.解:(I)
由,得。
又當(dāng)時(shí),得
(Ⅱ)當(dāng)
即時(shí)函數(shù)遞增。
故的單調(diào)增區(qū)間為,
18.解:(I)各取1個(gè)球的結(jié)果有(紅,紅1)(紅,紅2)(紅,白1)(紅,白2)(紅,黑)
(白,紅2)(白,紅2)(白,白1)(白,白2)(白,黑)(白,紅1)(白,紅2)
(白,白1)(白,白2)(白,黑)(黑1,紅1)(黑1,紅2)(黑1,白1)(黑1,白2)(黑1,黑)(黑2,紅1)(黑2,紅2)(黑2,白1)(黑2,白2)(黑2,黑)(黑3,紅1)
(黑3,紅2)(黑3,白1)(黑3,白2)(黑3,黑)
等30種情況
其中恰有1白1黑有(白,黑)…(黑3,白2)8種情況,
故1白1黑的概率為
(Ⅱ)2紅有2種,2白有4種,2黑有3種,
故兩球顏色相同的概率為
(Ⅲ)1紅有1×3+2×5=13(種),2紅有2種,
故至少有1個(gè)紅球的概率為
19.解:(I)側(cè)視圖 (高4,底2)
(Ⅱ)證明,由面ABC得AC,又由俯視圖知ABAC,,
面PAB
又AC面PAC,面PAC面PAB
(Ⅲ)面ABC,為直線PC與底面ABC所成的角
在中,PA=4,AC=,,
20.解:(I)由題意設(shè)C的方程為由,得。
設(shè)直線的方程為,由
②代入①化簡(jiǎn)整理得
因直線與拋物線C相交于不同的兩點(diǎn),
故
即,解得又時(shí)僅交一點(diǎn),
(Ⅱ)設(shè),由由(I)知
21.解:(I) 由得
于是故
切線方程為,即
(Ⅱ)令,解得
①當(dāng)時(shí),即時(shí),在內(nèi),,于是在[1,4]內(nèi)為增函數(shù)。從而
②當(dāng),即,在內(nèi),,于是在[1,4]內(nèi)為減函數(shù),從而
③當(dāng)時(shí),在內(nèi)遞減,在內(nèi)遞增,故在[1,4]上的最大值為與的較大者。
由,得,故當(dāng)時(shí),
當(dāng)時(shí),
22.解:(I)設(shè)的首項(xiàng)為,公差為d,于是由
解得
(Ⅱ)
由 ①
得 ②
①―②得 即
當(dāng)時(shí),,當(dāng)時(shí),
于是
設(shè)存在正整數(shù),使對(duì)恒成立
當(dāng)時(shí),,即
當(dāng)時(shí),
當(dāng)時(shí),當(dāng)時(shí),,當(dāng)時(shí),
存在正整數(shù)或8,對(duì)于任意正整數(shù)都有成立。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com