題目列表(包括答案和解析)
已知向量,則的面積等于
A.1 B.
C.7 D.
在中,已知向量,則的面積等于( )
A. | B. | C. | D. |
A. | B. | C. | D. |
a |
b |
a |
b |
a |
b |
A.
| B.7 |
下列人類所需的營養(yǎng)物質(zhì)中,既不參與構(gòu)成人體細胞,也不為人體提供能量的是,答案:0,選項:維生素,選項:水,選項:無機鹽,... - 初中生物 - 精英家教網(wǎng)
.artpreview dt{background:#fff;color:#000}#cont{background:#fff url(http://img.jyeoo.net/images/body_bg.jpg) repeat-x;margin:0}
function initJavaScriptCallback() { QuesCart.init("bio", true); }
var imageRootUrl="http://img.jyeoo.net/",wwwRootUrl="http://www.jyeoo.com/",blogRootUrl="http://blog.jyeoo.com/",spaceRootUrl="http://space.jyeoo.com/",loginUrl="http://www.jyeoo.com/",logoutUrl="http://www.jyeoo.com/account/logoff",scriptsUrl="http://img.jyeoo.net/scripts/",isMobile=false;var mustyleAttr={color:"#000000",fontsize:"13px",fontfamily:"arial",displaystyle:"true"};document.domain="jyeoo.com";$.ajaxSetup({cache:true});C.-
| D.-
|
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
initJavaScript();
充值|設(shè)為首頁|免費注冊|登錄
在線問答在線組卷在線訓(xùn)練 精英家教網(wǎng) 更多試題 》試題下列人類所需的營養(yǎng)物質(zhì)中,既不參與構(gòu)成人體細胞,也不為人體提供能量的是( 。
故選:A點評:解答此題的關(guān)鍵是熟練掌握人體需要的營養(yǎng)物質(zhì)及其作用.答題:xushifeng老師 隱藏解析在線訓(xùn)練 |
如圖,已知向量,可構(gòu)成空間向量的一個基底,若
,在向量已有的運算法則的基礎(chǔ)上,新定義一種運算,顯然的結(jié)果仍為一向量,記作.
求證:向量為平面的法向量;
求證:以為邊的平行四邊形的面積等于;
將四邊形按向量平移,得到一個平行六面體,試判斷平行六面體的體積與的大。
一、選擇題:(每小題5分,共50分)
題號
1
2
3
4
5
6
7
8
9
10
答案
B
D
B
A
C
C
C
A
A
B
二、填空題:(每小題4分,共24分)
11. 12.4 13. 14. 15.4 16.
三、解答題:(共76分,以下各題為累計得分,其他解答請相應(yīng)給分)
17.解:(I)
由,得。
又當時,得
(Ⅱ)當
即時函數(shù)遞增。
故的單調(diào)增區(qū)間為,
18.解:(I)各取1個球的結(jié)果有(紅,紅1)(紅,紅2)(紅,白1)(紅,白2)(紅,黑)
(白,紅2)(白,紅2)(白,白1)(白,白2)(白,黑)(白,紅1)(白,紅2)
(白,白1)(白,白2)(白,黑)(黑1,紅1)(黑1,紅2)(黑1,白1)(黑1,白2)(黑1,黑)(黑2,紅1)(黑2,紅2)(黑2,白1)(黑2,白2)(黑2,黑)(黑3,紅1)
(黑3,紅2)(黑3,白1)(黑3,白2)(黑3,黑)
等30種情況
其中恰有1白1黑有(白,黑)…(黑3,白2)8種情況,
故1白1黑的概率為
(Ⅱ)2紅有2種,2白有4種,2黑有3種,
故兩球顏色相同的概率為
(Ⅲ)1紅有1×3+2×5=13(種),2紅有2種,
故至少有1個紅球的概率為
19.解:(I)側(cè)視圖 (高4,底2)
(Ⅱ)證明,由面ABC得AC,又由俯視圖知ABAC,,
面PAB
又AC面PAC,面PAC面PAB
(Ⅲ)面ABC,為直線PC與底面ABC所成的角
在中,PA=4,AC=,,
20.解:(I)由題意設(shè)C的方程為由,得。
設(shè)直線的方程為,由
②代入①化簡整理得
因直線與拋物線C相交于不同的兩點,
故
即,解得又時僅交一點,
(Ⅱ)設(shè),由由(I)知
21.解:(I) 由得
于是故
切線方程為,即
(Ⅱ)令,解得
①當時,即時,在內(nèi),,于是在[1,4]內(nèi)為增函數(shù)。從而
②當,即,在內(nèi),,于是在[1,4]內(nèi)為減函數(shù),從而
③當時,在內(nèi)遞減,在內(nèi)遞增,故在[1,4]上的最大值為與的較大者。
由,得,故當時,
當時,
22.解:(I)設(shè)的首項為,公差為d,于是由
解得
(Ⅱ)
由 ①
得 ②
①―②得 即
當時,,當時,
于是
設(shè)存在正整數(shù),使對恒成立
當時,,即
當時,
當時,當時,,當時,
存在正整數(shù)或8,對于任意正整數(shù)都有成立。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com