7.(理)若二項(xiàng)式的展開(kāi)式中的第二項(xiàng)等于.則= . 查看更多

 

題目列表(包括答案和解析)

(14分)已知在(其中n<15)的展開(kāi)式中:
(1)求二項(xiàng)式展開(kāi)式中各項(xiàng)系數(shù)之和;
(2)若展開(kāi)式中第9項(xiàng),第10項(xiàng),第11項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列,求n的值;
(3)在(2)的條件下寫(xiě)出它展開(kāi)式中的有理項(xiàng).

查看答案和解析>>

(14分)已知在(其中n<15)的展開(kāi)式中:
(1)求二項(xiàng)式展開(kāi)式中各項(xiàng)系數(shù)之和;
(2)若展開(kāi)式中第9項(xiàng),第10項(xiàng),第11項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列,求n的值;
(3)在(2)的條件下寫(xiě)出它展開(kāi)式中的有理項(xiàng).

查看答案和解析>>

(理科加試題)若二項(xiàng)式數(shù)學(xué)公式的展開(kāi)式中的常數(shù)項(xiàng)為第五項(xiàng).
(1)求n的值;
(2)求展開(kāi)式中系數(shù)最大的項(xiàng).

查看答案和解析>>

(理科加試題)若二項(xiàng)式的展開(kāi)式中的常數(shù)項(xiàng)為第五項(xiàng).
(1)求n的值;
(2)求展開(kāi)式中系數(shù)最大的項(xiàng).

查看答案和解析>>

若(
x
+
1
2
4x
n(n∈N*)展開(kāi)式中前三項(xiàng)系數(shù)成等差數(shù)列,
(1)求展開(kāi)式中第4項(xiàng)的系數(shù)和二項(xiàng)式系數(shù);
(2)求展開(kāi)式中的所有有理項(xiàng).

查看答案和解析>>

一. 填空題(每題4分,共48分)

1. {0};   2. 四;   3. 12;   4. 0;   5. 4;   6. 理、文7;   7. 理2a、文4;

8. 0.25;    9. 126;    10. 18;    11. ;    12. (或).

二.選擇題(每題4分,共16分)

13.D;  14.B;  15.C;  16.理B、文B.

三. 解答題.  17.(本題滿(mǎn)分12分)解:由已知得     (3分)

,  ∴           (6分)

,即,∴         (9分)

的面積S=.            (12分)

18.(本題滿(mǎn)分12分)解:∵,∴       (5分)

,欲使是純虛數(shù),

=                      (7分)
   ∴,  即                     (11分)
   ∴當(dāng)時(shí),是純虛數(shù).                      (12分)

19.(本題滿(mǎn)分14分,第1小題滿(mǎn)分9分,第2小題滿(mǎn)分5分)

解:(1)依題意設(shè),則,                (2分)

       (4分)    而

,即,    (6分)    ∴       (7分)

從而.                            (9分)

(2)平面,

∴直線(xiàn)到平面的距離即點(diǎn)到平面的距離           (2分)

也就是的斜邊上的高,為.                (5分)

20.(本題滿(mǎn)分14分,第1小題滿(mǎn)分8分,第2小題滿(mǎn)分6分)

解:(1)不正確.                          (2分)
   沒(méi)有考慮到還可以小于.                  (3分)
   正確解答如下:
   令,則,
   當(dāng)時(shí),,即                  (5分)
   當(dāng)時(shí),,即                  (7分)
   ∴,即既無(wú)最大值,也無(wú)最小值.           (8分)

(2)(理)對(duì)于函數(shù),令
  ①當(dāng)時(shí),有最小值,,                   (9分)

當(dāng)時(shí),,即,當(dāng)時(shí),即

,即既無(wú)最大值,也無(wú)最小值.           (10分)
  ②當(dāng)時(shí),有最小值,, 

此時(shí),,∴,即,既無(wú)最大值,也無(wú)最小值       .(11分)
  ③當(dāng)時(shí),有最小值,,即   (12分)
,即
∴當(dāng)時(shí),有最大值,沒(méi)有最小值.             (13分)
∴當(dāng)時(shí),既無(wú)最大值,也無(wú)最小值。
 當(dāng)時(shí),有最大值,此時(shí);沒(méi)有最小值.      (14分)

(文)∵,    ∴             (12分)

∴函數(shù)的最大值為(當(dāng)時(shí))而無(wú)最小值.     (14分)

21.(本滿(mǎn)分16分,第1、2小題滿(mǎn)分各4分,第3小題滿(mǎn)分8分)

解:(1)                            (4分)

(2)由解得                            (7分)

所以第個(gè)月更換刀具.                                       (8分)

(3)第個(gè)月產(chǎn)生的利潤(rùn)是:   (9分)

個(gè)月的總利潤(rùn):(11分)

個(gè)月的平均利潤(rùn):     (13分)

 且

在第7個(gè)月更換刀具,可使這7個(gè)月的平均利潤(rùn)最大(13.21萬(wàn)元) (14分)此時(shí)刀具厚度為(mm)                  (16分)

22.(本題滿(mǎn)分18分,第1、2小題滿(mǎn)分各4分,第3小題滿(mǎn)分10分)

解:(1)              (4分)

(2)各點(diǎn)的橫坐標(biāo)為:           (8分)

(3)過(guò)作斜率為的直線(xiàn)交拋物線(xiàn)于另一點(diǎn),            (9分)

則一般性的結(jié)論可以是:

點(diǎn) 的相鄰橫坐標(biāo)之和構(gòu)成以為首項(xiàng)和公比的等比數(shù)列(或:點(diǎn)無(wú)限趨向于某一定點(diǎn),且其橫(縱)坐標(biāo)之差成等比數(shù)列;或:無(wú)限趨向于某一定點(diǎn),且其橫(縱)坐標(biāo)之差成等比數(shù)列,等)(12分)

證明:設(shè)過(guò)點(diǎn)作斜率為的直線(xiàn)交拋物線(xiàn)于點(diǎn)

          得;       

點(diǎn)的橫坐標(biāo)為,則               (14分)

于是兩式相減得:            (16分)

=  

故點(diǎn)無(wú)限逼近于點(diǎn)      

同理無(wú)限逼近于點(diǎn)                          (18分)

 

 

 


同步練習(xí)冊(cè)答案