(2)某人在2002年將33萬元存入銀行.假設(shè)銀行扣利息稅后的年利率為1.8%.且每年按復(fù)利計算(上一年的利息計入第二年的本金).那么5年到期時這筆錢連本帶息是否一定夠買按(1)中所述降價后的B型車一輛? 查看更多

 

題目列表(包括答案和解析)

23、假設(shè)A型進(jìn)口車關(guān)稅稅率在2002年是100%,在2007年是25%,2002年A型進(jìn)口車每輛價格為64萬元(其中含32萬元關(guān)稅稅款).
(1)已知與A型車性能相近的B型國產(chǎn)車,2002年每輛價格為46萬元,若A型車的價格只受關(guān)稅降低的影響,為了保證2007年B型車的價格不高于A型車價格的90%,B型車價格要逐年降低,問平均每年至少下降多少萬元?
(2)某人在2002年將33萬元存入銀行,假設(shè)銀行扣利息稅后的年利率為1.8%(5年內(nèi)不變),且每年按復(fù)利計算(上一年的利息計入第二年的本金),那么5年到期時這筆錢連本帶息是否一定夠買按(1)中所述降價后的B型車一輛?

查看答案和解析>>

假設(shè)A型進(jìn)口車關(guān)稅稅率在2002年是100%,在2007年是25%,2002年A型進(jìn)口車每輛價格為64萬元(其中含32萬元關(guān)稅稅款).
(1)已知與A型車性能相近的B型國產(chǎn)車,2002年每輛價格為46萬元,若A型車的價格只受關(guān)稅降低的影響,為了保證2007年B型車的價格不高于A型車價格的90%,B型車價格要逐年降低,問平均每年至少下降多少萬元?
(2)某人在2002年將33萬元存入銀行,假設(shè)銀行扣利息稅后的年利率為1.8%(5年內(nèi)不變),且每年按復(fù)利計算(上一年的利息計入第二年的本金),那么5年到期時這筆錢連本帶息是否一定夠買按(1)中所述降價后的B型車一輛?

查看答案和解析>>

假設(shè)A型進(jìn)口車關(guān)稅稅率在2002年是100%,在2007年是25%,2002年A型進(jìn)口車每輛價格為64萬元(其中含32萬元關(guān)稅稅款).
(1)已知與A型車性能相近的B型國產(chǎn)車,2002年每輛價格為46萬元,若A型車的價格只受關(guān)稅降低的影響,為了保證2007年B型車的價格不高于A型車價格的90%,B型車價格要逐年降低,問平均每年至少下降多少萬元?
(2)某人在2002年將33萬元存入銀行,假設(shè)銀行扣利息稅后的年利率為1.8%(5年內(nèi)不變),且每年按復(fù)利計算(上一年的利息計入第二年的本金),那么5年到期時這筆錢連本帶息是否一定夠買按(1)中所述降價后的B型車一輛?

查看答案和解析>>

假設(shè)A型進(jìn)品車關(guān)稅稅率在2002年是100%,在2007年是25%,在2002年A型進(jìn)口車每輛價格為64萬元(其中含32萬元關(guān)稅稅款)

   (1)已知與A型車性能相近的B型國產(chǎn)車,2002年每輛價格為46萬元,若A型車的價格只受關(guān)稅降低的影響,為了保證2007年B型車的價格不高于A型車價格的90%,B型車價格要逐年降低,問平均每年至少下降多少萬元?

   (2)某人在2002年將33萬元存入銀行,假設(shè)銀行扣利息稅后的年利率為1.8%(5年內(nèi)不變),且每年按復(fù)利計算(上一年的利息計入第二年的本金),那么5年到期時這筆錢連本帶利息是否一定夠買按(1)中所述降價后的B型車一輛?(參考數(shù)據(jù):1.0185≈1.093)

查看答案和解析>>

假設(shè)A型進(jìn)口車關(guān)稅稅率在2002年是100%,在2007年是25%,2002年A型進(jìn)口車每輛價格為64萬元(其中含32萬元關(guān)稅稅款).
(1)已知與A型車性能相近的B型國產(chǎn)車,2002年每輛價格為46萬元,若A型車的價格只受關(guān)稅降低的影響,為了保證2007年B型車的價格不高于A型車價格的90%,B型車價格要逐年降低,問平均每年至少下降多少萬元?
(2)某人在2002年將33萬元存入銀行,假設(shè)銀行扣利息稅后的年利率為1.8%(5年內(nèi)不變),且每年按復(fù)利計算(上一年的利息計入第二年的本金),那么5年到期時這筆錢連本帶息是否一定夠買按(1)中所述降價后的B型車一輛?

查看答案和解析>>

1.B 2.(文)B。ɡ恚〥 3.C 4.B 5.C 6.A 7.(文)A。ɡ恚〥 8.D 9.B 10.D 11.A 12.B

13.2  14.(0,)  15.  16.

17.恰有3個紅球的概率

  有4個紅球的概率

  至少有3個紅球的概率

18.∵ 

 。1)最小正周期 

 。2),

  ∴ 時 ,∴ ,  ∴ a=1.

19.(甲)(1)以DADC、DP所在直線分別為x軸、y軸、z軸建立空間坐標(biāo)系(2,0,0),B(2,2,0),C(0,2,0)設(shè)P(0,0,2m(1,1,m),∴ (-1,1,m),=(0,0,2m

  ∴ ,,

  ∴ 點E坐標(biāo)是(1,1,1)

 。2)∵ 平面PAD, ∴ 可設(shè)Fx,0,z=(x-1,-1,z-1)

  ∵ EF⊥平面PCB ∴ ,-1,2,0,

  ∵  ∴ ,-1,0,2,-2

  ∴ 點F的坐標(biāo)是(1,0,0),即點FAD的中點.

 。ㄒ遥1)證明:∵ 是菱形,∠=60°是正三角形

  又∵ 

  

 。2) ∴ ∠BEM為所求二面角的平面角

  △中,60°,Rt△中,60°

  ∴ , ∴ 所求二面角的正切值是2;

 。3)

20.(1)設(shè)fx)圖像上任一點坐標(biāo)為(x,y),點(x,y)關(guān)于點A(0,1)的對稱點(-x,2-y)在hx)圖像上

  ∴ , ∴ ,即 

 。2)(文):,即在(0,上遞減, ∴ a≤-4

  (理):, ∵  在(0,上遞減,

  ∴ (0,時恒成立.即 (0,時恒成立.

∵ (0,時, ∴

21.(1)2007年A型車價為32+32×25%=40(萬元)

  設(shè)B型車每年下降d萬元,2002,2003……2007年B型車價格為:(公差為-d

  …… ∴ ≤40×90% ∴ 46-5d≤36 d≥2

  故每年至少下降2萬元

 。2)2007年到期時共有錢

  >33(1+0.09+0.00324+……)=36.07692>36(萬元)

  故5年到期后這筆錢夠買一輛降價后的B型車

22.(1)如圖,以AB所在直線為x軸,AB中垂線為y軸建立直角坐標(biāo)系,A(-1,0),B(1,0)

  設(shè)橢圓方程為:

 ∴

  ∴ 橢圓C的方程是:

 。2)(文)lAB時不符合,

  ∴ 設(shè)l

  設(shè)M,),N,

  ∵   ∴ ,即,

  ∴ l,即 經(jīng)驗證:l與橢圓相交,

  ∴ 存在,lAB的夾角是

 。ɡ恚,,lAB時不符,設(shè)lykxmk≠0)

  由 

  M、N存在

  設(shè)M),N),MN的中點F

  ∴ ,

  

  ∴   ∴ 

  ∴   ∴ 

  ∴ lAB的夾角的范圍是,

 

 

 


同步練習(xí)冊答案