題目列表(包括答案和解析)
.(本小題滿分14分)
某校高三文科分為四個班.高三數(shù)學(xué)調(diào)研測試后, 隨機地在各班抽取部分學(xué)生進行測試成績統(tǒng)計,各班被抽取的學(xué)生人數(shù)恰好成等差數(shù)列,人數(shù)最少的班被抽取了22人. 抽取出來的所有學(xué)生的測試成績統(tǒng)計結(jié)果的頻率分布條形圖如圖5所示,其中120~130(包括120分但不包括130分)的頻率為0.05,此分數(shù)段的人數(shù)為5人.
(1) 問各班被抽取的學(xué)生人數(shù)各為多少人?
(2) 在抽取的所有學(xué)生中,任取一名學(xué)生, 求分數(shù)不小于90分的概率.
(本題滿分12分)
對甲、乙兩種商品的重量的誤差進行抽查,測得數(shù)據(jù)如下(單位:):
甲:13 15 14 14 9 14 21 9 10 11
乙:10 14 9 12 15 14 11 19 22 16
(1)畫出樣本數(shù)據(jù)的莖葉圖,并指出甲,乙兩種商品重量誤差的中位數(shù);
(2)計算甲種商品重量誤差的樣本方差;
(3)現(xiàn)從重量誤差不低于15的乙種商品中隨機抽取兩件,求重量誤差為19的商品被抽
中的概率。
(本小題滿分14分)為了解初三學(xué)生女生身高情況,某中學(xué)對初三女生身高進行了一次抽樣調(diào)查,根據(jù)所得數(shù)據(jù)整理后列出了頻率分布表如下:
組 別 頻數(shù) 頻率
145.5~149.5 1 0.02
149.5~153.5 4 0.08
153.5~157.5 22 0.44
157.5~161.5 13 0.26
161.5~165.5 8 0.16
165.5~169.5 m n
合 計 M N
(1)求出表中所表示的數(shù)m,n,M,N分別是多少?
(2)畫出頻率分布直方圖和頻率分布折線圖.
(3)若要從中再用分層抽樣方法抽出10人作進一步調(diào)查,則身高在[153.5,161.5)范圍內(nèi)的應(yīng)抽出多少人?
(4)根據(jù)頻率分布直方圖,分別求出被測女生身高的眾數(shù),中位數(shù)和平均數(shù)?(結(jié)果保留一位小數(shù))
(本題滿分12分)
對甲、乙兩種商品的重量的誤差進行抽查,測得數(shù)據(jù)如下(單位:):
甲:13 15 14 14 9 14 21 9 10 11
乙:10 14 9 12 15 14 11 19 22 16
(1)畫出樣本數(shù)據(jù)的莖葉圖,并指出甲,乙兩種商品重量誤差的中位數(shù);
(2)計算甲種商品重量誤差的樣本方差;
(3)現(xiàn)從重量誤差不低于15的乙種商品中隨機抽取兩件,求重量誤差為19的商品被抽
中的概率。
.(本小題滿分14分)
某校高三文科分為四個班.高三數(shù)學(xué)調(diào)研測試后, 隨機地在各班抽取部分學(xué)生進行測試成績統(tǒng)計,各班被抽取的學(xué)生人數(shù)恰好成等差數(shù)列,人數(shù)最少的班被抽取了22人. 抽取出來的所有學(xué)生的測試成績統(tǒng)計結(jié)果的頻率分布條形圖如圖5所示,其中120~130(包括120分但不包括130分)的頻率為0.05,此分數(shù)段的人數(shù)為5人.
(1) 問各班被抽取的學(xué)生人數(shù)各為多少人?
(2) 在抽取的所有學(xué)生中,任取一名學(xué)生, 求分數(shù)不小于90分的概率.
一、選擇題:(本大題共10小題,每小題5分,共50分)
1 B
三、解答題:(本大題共6個解答題,滿分76分,)
線為y軸建立平面直角坐標系如圖所示,
則A(-4,0),N(4,0),設(shè)P(x,y)
由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:
代入坐標得:
整理得:
即
所以動點P的軌跡是以點
(理)解:(I)當a=1時
或或
或
(II)原不等式
設(shè)有
當且僅當
即時
解得
若由方程組解得,可參考給分
(理)解:(Ⅰ)設(shè) (a≠0),則
…… ①
…… ②
又∵有兩等根
∴…… ③
由①②③得
又∵
∴a<0, 故
∴
(Ⅱ)
∵g(x)無極值
∴方程
得
或或
或
(II)原不等式
設(shè)有
當且僅當
即時
(理)解:以AN所在直線為x軸,AN的中垂
線為y軸建立平面直角坐標系如圖所示,
則A(-4,0),N(4,0),設(shè)P(x,y)
由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:
代入坐標得:
整理得:
即
所以動點P的軌跡是以點
…… ①
…… ②
又∵有兩等根
∴…… ③
由①②③得
又∵
∴a<0, 故
∴
(Ⅱ)
∵g(x)無極值
∴方程
得
(理)解:(I)設(shè) (1)
又故 (2)
由(1),(2)解得
(II)由向量與向量的夾角為得
由及A+B+C=知A+C=
則
由0<A<得,得
故的取值范圍是
Sn+1=2an+1-3(n+1),兩式相減并整理得:an+1=2an+3
所以3+ an+1=2(3+an),又a1=S1=2a1-3,a1=3可知3+ a1=6,進而可知an+3
所以,故數(shù)列{3+an}是首相為6,公比為2的等比數(shù)列,
所以3+an=6,即an=3()
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com