復Z在映射f下的象為z?i.則-1+2i的原象為A.2+i B.2-i C.-2+i D.-2-i 查看更多

 

題目列表(包括答案和解析)

已知f是直角坐標平面xOy到自身的一個映射,點P在映射f下的象為點Q,記作Q=f(P).
設P1(x1,y1),P2=f(P1),P3=f(P2),…,Pn=f(Pn-1),….如果存在一個圓,使所有的點Pn(xn,yn)(n∈N*)都在這個圓內(nèi)或圓上,那么稱這個圓為點Pn(xn,yn)的一個收斂圓.特別地,當P1=f(P1)時,則稱點P1為映射f下的不動點.
(Ⅰ) 若點P(x,y)在映射f下的象為點Q(2x,1-y).
①求映射f下不動點的坐標;
②若P1的坐標為(1,2),判斷點Pn(xn,yn)(n∈N*)是否存在一個半徑為3的收斂圓,并說明理由.
(Ⅱ) 若點P(x,y)在映射f下的象為點Q(
x+y
2
+1,
x-y
2
)
,P1(2,3).求證:點Pn(xn,yn)(n∈N*)存在一個半徑為
5
的收斂圓.

查看答案和解析>>

已知f是直角坐標平面xOy到自身的一個映射,點P在映射f下的象為點Q,記作Q=f(P),設P1(x1,y1),P2=f(P1),P3=f(P2),…,Pn=f(Pn-1),…。如果存在一個圓,使所有的點Pn(xn,yn)(n∈N*)都在這個圓內(nèi)或圓上,那么稱這個圓為點Pn(xn,yn)的一個收斂圓。特別地,當P1=f(P1)時,則稱點P1為映射f下的不動點,
(Ⅰ)若點P(x,y)在映射f下的象為點Q(2x,1-y),
①求映射f下不動點的坐標;
②若P1的坐標為(1,2),判斷點Pn(xn,yn)(n∈N*)是否存在一個半徑為3的收斂圓,并說明理由;
(Ⅱ)若點P(x,y)在映射f下的象為點,P1(2,3),求證:點Pn(xn,yn)(n∈N*)存在一個半徑為的收斂圓。

查看答案和解析>>

已知f是直角坐標平面xOy到自身的一個映射,點P在映射f下的象為點Q,記作Q=f(P).
設P1(x1,y1),P2=f(P1),P3=f(P2),…,Pn=f(Pn-1),….如果存在一個圓,使所有的點Pn(xn,yn)(n∈N*)都在這個圓內(nèi)或圓上,那么稱這個圓為點Pn(xn,yn)的一個收斂圓.特別地,當P1=f(P1)時,則稱點P1為映射f下的不動點.
(Ⅰ) 若點P(x,y)在映射f下的象為點Q(2x,1-y).
①求映射f下不動點的坐標;
②若P1的坐標為(1,2),判斷點Pn(xn,yn)(n∈N*)是否存在一個半徑為3的收斂圓,并說明理由.
(Ⅱ) 若點P(x,y)在映射f下的象為點Q(
x+y
2
+1,
x-y
2
)
,P1(2,3).求證:點Pn(xn,yn)(n∈N*)存在一個半徑為
5
的收斂圓.

查看答案和解析>>

復數(shù)Z在映射f下的象為(1+i)Z,則-1+2i的原象為( 。

查看答案和解析>>

16、復數(shù)Z+i在映射f下的象為Z•i,則-1+2i的原象為( 。

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

A

C

D

C

C

A

C

D

B

B

D

二、填空題

13.3        14.-a、b、-c         15.18             16.(1)(2)

三、解答題

17.解:(1)∵夾角為x,∴cosx=6

S=sin∠ABC=sin(π-x)=sinx                           …………2分

                                    …………4分

x∈[0,π],∴x∈[]                                                                              …………6分

(2)f(x)==cos4x×1+(-sinx)(sin3x+2sin2x)=cos4x-sin4x-2sinxcosx

=(cos2x+sin2x)(cos2x-sin2x)-sin2x=cos2x-sin2x=2cos(2x+)                  …………9分

f(x)∈[-]                                                                                       …………12分

18.解:(1)從平臺達到第一階每步只能上一階,因此概率P1=                …………2分

從平臺到達第二階有二種走法:走兩步,或一步到達,

故概率為P2=×+                                                                      …………5分

(2)該人走了五步,共上的階數(shù)ξ取值為5,6,7,8,9,10

ξ的分布列為:(6分)

ξ

5

6

7

8

9

10

P

()5

Eξ=5×()5+6×    …………12分

19.(1)證:連結(jié)A1DA1B

由已知可得△AA1B和△A1AD為全等的正三角形.

A1B=A1DA1OBD

又AB=AD,BD=BD

∴△ABD≌△A1BDA1O=AO=

AA1=2∴A1OAO

A1O⊥平面ABCD                                                                        …………4分

(2)過C1C1HACAC的延長線于H,則C1H⊥平面ABCD

連結(jié)BH,則∠C1BHBC1與平面ABCD所成的角.

OH=A1C1=2BO=,∴BH=

∴tan∠C1BH=C1BH=arctan                       …………8分

((2)也可用向量法求解)

(3)連結(jié)OO1,易知AA1OO1,面AA1O1O⊥面BDD1B1

A1GOO1,則A1GAA1與面B1D1DB的距離.

由(1)知A1O=AO=A1O1,A1OA1O1

A1G==1                                                                             …………12分

((3)也可用向量法或等積法求解)

20.(1)y2=,∵y2>0,x>0,∴x>3又y<0

  ∴y=-                                                                      …………4分

  (2)x=y=f-1(x)=  (x<0)                                        …………7分

  設(x0,y0)為y=f-1(x)圖象上任一點.

  =

  故-                                                                                   …………12分

21.(1),當n=時,

c=                                                                                            …………3分

(2)∵直線x=P點在以F為焦點,x=為準線的橢圓上                                                                                …………5分

P(x,y)則點B(0,-1)代入,解得a=

∴曲線方程為                                                                   …………7分

 (3)設l:y=kx+m(k≠0)與聯(lián)立,消去y得:(1+3k2)x2+6kmx+3m2-3=0,

  △>0得:m2<3k2+1                                                                         …………9分

  設M(x1,y1),N(x2,y2),MN中點A(x0,y0),由,

  由韋達定理代入KBA=-,可得到m=

  ∴k2-1<0,∵k≠0,∴-1<k<0或0<k<1                                                 …………11分

  即存在k∈(-1,0)∪(0.1)使l與曲線Q交于兩個不同的點M、N

  使                                                                                 …………12分

22.(1)由于數(shù)列{an}的倒均數(shù),Vn=

得:                                                           …………2分

n≥2時,所以,又當n=1時,a1=也適合上式.

an=                                                                           …………6分

(2)由于{bn}是公比為q=的等比數(shù)列,∴{}為公比為2的等比數(shù)列,其倒均數(shù)

Vn=,不等式Vn<                                      …………8分

b1<0,則2n-1>8n,令f(x)=2x-8x-1,則f(x)=2xln2-8,當x≤3時,f(x)<0,當x>4時,f(x)>0,∴f(x)當x≥4時是增函數(shù)又f(x)=-9<0,f(6)=15>0,故當n≥6時,f(n)>0,即2n-1>8n恒成立,因此,存在正整數(shù)m,使得當nm,n∈N*時,Vn<恒成立,且m的最小值為6……12分

b1>0,則上式即為2n-1<8n,顯然當n≤5時成立,而n>5時不成立,故不存在正整數(shù)m,使nm(n∈N*)時,Vn=成立                                                                 …………14分

 

 


同步練習冊答案