[解析]由對稱性點在平面內(nèi)的射影必在的平分線上作于.連結(jié).則由三垂線定理. 查看更多

 

題目列表(包括答案和解析)

在函數(shù)的圖象上有、三點,橫坐標分別為其中

⑴求的面積的表達式;

⑵求的值域.

【解析】由題意利用分割可先表示三角形ABC的面積,然后應用對數(shù)運算性質(zhì)及二次函數(shù)的性質(zhì)求解函數(shù)的最大值,屬于知識的簡單綜合.

 

查看答案和解析>>

如圖,四棱柱中,平面,底面是邊長為的正方形,側(cè)棱

。ǎ保┣笕忮F的體積;

。ǎ玻┣笾本與平面所成角的正弦值;

 (3)若棱上存在一點,使得,當二面角的大小為時,求實數(shù)的值.

【解析】(1)在中,

.                 (3’)

(2)以點D為坐標原點,建立如圖所示的空間直角坐標系,則

       (4’)

,設(shè)平面的法向量為

,                                             (5’)

,

.  (7’)

(3)

設(shè)平面的法向量為,由,      (10’)

 

查看答案和解析>>

已知曲線的參數(shù)方程是是參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線:的極坐標方程是=2,正方形ABCD的頂點都在上,且A,B,C,D依逆時針次序排列,點A的極坐標為(2,).

(Ⅰ)求點A,B,C,D的直角坐標;

 (Ⅱ)設(shè)P為上任意一點,求的取值范圍.

【命題意圖】本題考查了參數(shù)方程與極坐標,是容易題型.

【解析】(Ⅰ)由已知可得,,

,,

即A(1,),B(-,1),C(―1,―),D(,-1),

(Ⅱ)設(shè),令=,

==,

,∴的取值范圍是[32,52]

 

查看答案和解析>>

已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,為其前n項和,且滿足,.數(shù)列滿足,,為數(shù)列的前n項和.

(1)求數(shù)列的通項公式和數(shù)列的前n項和;

(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.

【解析】第一問利用在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

,

第二問,①當n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

第三問,

     若成等比數(shù)列,則,

即.

,可得,即

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時,滿足

,

(2)①當n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

綜合①、②可得的取值范圍是

(3),

     若成等比數(shù)列,則,

即.

,可得,即

,且m>1,所以m=2,此時n=12.

因此,當且僅當m=2, n=12時,數(shù)列中的成等比數(shù)列

 

查看答案和解析>>

如圖,直線與拋物線交于兩點,與軸相交于點,且.

(1)求證:點的坐標為;

(2)求證:;

(3)求的面積的最小值.

【解析】設(shè)出點M的坐標,并把過點M的方程設(shè)出來.為避免對斜率不存在的情況進行討論,可以設(shè)其方程為,然后與拋物線方程聯(lián)立消x,根據(jù),即可建立關(guān)于的方程.求出的值.

(2)在第(1)問的基礎(chǔ)上,證明:即可.

(3)先建立面積S關(guān)于m的函數(shù)關(guān)系式,根據(jù)建立即可,然后再考慮利用函數(shù)求最值的方法求最值.

 

查看答案和解析>>

1. 構(gòu)造向量,,所以,.由數(shù)量積的性質(zhì),得,即的最大值為2.

2. ∵,令,所以,當時,,當時,,所以當時,.

3.∵,∴,,又,∴,則,所以周期.作出上的圖象知:若,滿足條件的)存在,且關(guān)于直線對稱,,關(guān)于直線對稱,∴;若,滿足條件的)存在,且,關(guān)于直線對稱,關(guān)于直線對稱,

4. 不等式)表示的區(qū)域是如圖所示的菱形的內(nèi)部,

,點到點的距離最大,此時的最大值為;

,點到點的距離最大,此時的最大值為3.

5. 由于已有兩人分別抽到5和14兩張卡片,則另外兩人只需從剩下的18張卡片中抽取,共有種情況.抽到5 和14的兩人在同一組,有兩種情況:

(1) 5 和14 為較小兩數(shù),則另兩人需從15~20這6張中各抽1張,有種情況;

(2) 5 和14 為較大兩數(shù),則另兩人需從1~4這4張中各抽1張,有種情況.

于是,抽到5 和14 兩張卡片的兩人在同一組的概率為.

6. ∵,∴

設(shè),,則.

作出該不等式組表示的平面區(qū)域(圖中的陰影部分).

,則,它表示斜率為的一組平行直線,易知,當它經(jīng)過點時,取得最小值.

解方程組,得,∴


同步練習冊答案