題目列表(包括答案和解析)
(理)若實(shí)數(shù)x,y滿足則S = 2x+y的最大值為 ( )
A.7 B.4 C.3 D.2
(08年西工大附中理)若實(shí)數(shù)x,y滿足,則x+2y的最小值和最大值分別為( )
A.2,6 B.2,
(08年華師一附中二次壓軸理)已知實(shí)數(shù)x,y滿足條件,若z=|x+2y+m|的最大值為21,則常數(shù)m的值為_(kāi)_______________
已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,為其前n項(xiàng)和,且滿足,.?dāng)?shù)列滿足,,為數(shù)列的前n項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式和數(shù)列的前n項(xiàng)和;
(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請(qǐng)說(shuō)明理由.
【解析】第一問(wèn)利用在中,令n=1,n=2,
得 即
解得,, [
又時(shí),滿足,
,
第二問(wèn),①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.
,等號(hào)在n=2時(shí)取得.
此時(shí) 需滿足.
②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.
是隨n的增大而增大, n=1時(shí)取得最小值-6.
此時(shí) 需滿足.
第三問(wèn),
若成等比數(shù)列,則,
即.
由,可得,即,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,, [
又時(shí),滿足,
,
.
(2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.
,等號(hào)在n=2時(shí)取得.
此時(shí) 需滿足.
②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.
是隨n的增大而增大, n=1時(shí)取得最小值-6.
此時(shí) 需滿足.
綜合①、②可得的取值范圍是.
(3),
若成等比數(shù)列,則,
即.
由,可得,即,
.
又,且m>1,所以m=2,此時(shí)n=12.
因此,當(dāng)且僅當(dāng)m=2, n=12時(shí),數(shù)列中的成等比數(shù)列
函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6c/e/ons7m2.png" style="vertical-align:middle;" />,若存在常數(shù),使得對(duì)一切實(shí)數(shù)均成立,則稱為“圓錐托底型”函數(shù).
(1)判斷函數(shù),是否為“圓錐托底型”函數(shù)?并說(shuō)明理由.
(2)若是“圓錐托底型” 函數(shù),求出的最大值.
(3)問(wèn)實(shí)數(shù)、滿足什么條件,是“圓錐托底型” 函數(shù).
1.解析:,故選A。
2.(理)解析:∵
,
故選B。
(文)解析:抽取回族學(xué)生人數(shù)是,故選B。
3.解析:由,得,此時(shí),所以,,故選C。
4.(理)解析:顯然,若與共線,則與共線;若與共線,則,即,得,∴與共線,∴與共線是與共線的充要條件,故選C。
(文)解析:∵∥,∴,∴,故選C。
5.解析:設(shè)公差為,由題意得,;,解得或,故選C。
6.解析:(理)∵雙曲線的右焦點(diǎn)到一條漸近線的距離等于焦距的,∴,又∵,∴,∴,∴雙曲線的離心率是。故選B.
(文)∵雙曲線的右焦點(diǎn)到一條漸近線的距離等于焦距的,∴,又∵,∴,∴雙曲線的漸近線方程是,故選D.
7.解析:∵、為正實(shí)數(shù),∴,∴;由均值不等式得恒成立,,故②不恒成立,又因?yàn)楹瘮?shù)在是增函數(shù),∴,故恒成立的不等式是①③④。故選C.
8.解析:∵,∴在區(qū)間上恒成立,即在區(qū)間上恒成立,∴,故選D。
9.(理)解析:∵
,此函數(shù)的最小值為,故選C。
(文)解析:∵
,∴此函數(shù)的最小正周期是,故選C。
10.解析:如圖,∵正三角形的邊長(zhǎng)為,∴,∴,又∵,∴,故選D。
11.解析:∵在區(qū)間上是增函數(shù)且,∴其反函數(shù)在區(qū)間上是增函數(shù),∴,故選A
12.解析:如圖,①當(dāng)或時(shí),圓面被分成2塊,涂色方法有20種;②當(dāng)或時(shí),圓面被分成3塊,涂色方法有60種;
③當(dāng)時(shí),圓面被分成4塊,涂色方法有120種,所以m的取值范圍是,故選A。
13.(理)解析:做出表示的平面區(qū)域如圖,當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),取得最大值5。
(文)解析:將代入結(jié)果為,∴時(shí),表示直線右側(cè)區(qū)域,反之,若表示直線右側(cè)區(qū)域,則,∴是充分不必要條件。
14.解析:(理)∵,∴時(shí),,又時(shí),滿足上式,因此,,
∴。
(文)∵,∴時(shí),,又時(shí),滿足上式,因此,。
15.解析:設(shè)正四面體的棱長(zhǎng)為,連,取的中點(diǎn),連,∵為的中點(diǎn),∴∥,∴或其補(bǔ)角為與所成角,∵,,∴,∴,又∵,∴,∴與所成角的余弦值為。
16.解析:∵,∴,∵點(diǎn)為的準(zhǔn)線與軸的交點(diǎn),由向量的加法法則及拋物線的對(duì)稱性可知,點(diǎn)為拋物線上關(guān)于軸對(duì)稱的兩點(diǎn)且做出圖形如右圖,其中為點(diǎn)到準(zhǔn)線的距離,四邊形為菱形,∴,∴,∴,∴,∴,∴向量與的夾角為。
17.(10分)解析:(Ⅰ)由正弦定理得,,,…2分
∴,,………4分
(Ⅱ)∵,,∴,∴,………………………6分
又∵,∴,∴,………………………8分
∴!10分
18.解析:(Ⅰ)∵,∴;……………………理3文4分
(Ⅱ)∵三科會(huì)考不合格的概率均為,∴學(xué)生甲不能拿到高中畢業(yè)證的概率;……………………理6文8分
(Ⅲ)∵每科得A,B的概率分別為,∴學(xué)生甲被評(píng)為三好學(xué)生的概率為。……………………12分
(理)∵,,,。……………………9分
∴的分布列如下表:
0
1
2
3
∴的數(shù)學(xué)期望!12分
19.(12分)(理)解析:(Ⅰ)時(shí),
,,
由得, 或 ………3分
+
0
-
0
+
遞增
極大值
遞減
極小值
遞增
, ………………………6分
(Ⅱ)在定義域上是增函數(shù),
對(duì)恒成立,即
………………………9分
又(當(dāng)且僅當(dāng)時(shí),)
………………………4分
(文)解析:(Ⅰ)∵,∴,
,,………………………3分
(Ⅱ)∵,∴,
∴,
又,∴數(shù)列自第2項(xiàng)起是公比為的等比數(shù)列,………………………6分
∴,………………………8分
(Ⅲ)∵,∴,………………………10分
∴!12分
20.解析:(Ⅰ)∵∥,,∴,∵底面,∴,∴平面,∴,又∵平面,∴,∴平面,∴!4分
(Ⅱ)∵平面,∴,,∴為二面角的平面角,………………………6分
,,∴,又∵平面,,∴,∴二面角的正切值的大小為!8分
(Ⅲ)過(guò)點(diǎn)做∥,交于點(diǎn),∵平面,∴為
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com