0.1中年 查看更多

 

題目列表(包括答案和解析)

中國(guó)2010年上海世博會(huì)已于2010年5月1日在上海隆重開(kāi)館.小王某天乘火車(chē)從重慶到上海去參觀世博會(huì),若當(dāng)天從重慶到上海的三列火車(chē)正點(diǎn)到達(dá)的概率分別為0.8,0.7,0.9,假設(shè)這三列火車(chē)之間是否正點(diǎn)到達(dá)互不影響.求:
(1)這三列火車(chē)恰好有兩列正點(diǎn)到達(dá)的概率;
(2)這三列火車(chē)至少有一列正點(diǎn)到達(dá)的概率.

查看答案和解析>>

精英家教網(wǎng)中華人民共和國(guó)《道路交通安全法》中將飲酒后違法駕駛機(jī)動(dòng)車(chē)的行為分成兩個(gè)檔次:“酒后駕車(chē)”和“醉酒駕車(chē)”,其檢測(cè)標(biāo)準(zhǔn)是駕駛?cè)藛T血液中的酒精含量Q(簡(jiǎn)稱(chēng)血酒含量,單位是毫克/100毫升),當(dāng)20≤Q≤80時(shí),為酒后駕車(chē);當(dāng)Q>80時(shí),為醉酒駕車(chē).濟(jì)南市公安局交通管理部門(mén)于2011年2月的某天晚上8點(diǎn)至11點(diǎn)在市區(qū)設(shè)點(diǎn)進(jìn)行一次攔查行動(dòng),共依法查出了60名飲酒后違法駕駛機(jī)動(dòng)車(chē)者,如圖,為這60名駕駛員抽血檢測(cè)后所得結(jié)果畫(huà)出的頻率分布直方圖(其中Q≥140的人數(shù)計(jì)入120≤Q<140人數(shù)之內(nèi)).
(1)求此次攔查中醉酒駕車(chē)的人數(shù);
(2)從違法駕車(chē)的60人中按酒后駕車(chē)和醉酒駕車(chē)?yán)梅謱映闃映槿?人做樣本進(jìn)行研究,再?gòu)某槿〉?人中任取3人,求3人中含有醉酒駕車(chē)人數(shù)x的分布列和期望.

查看答案和解析>>

11、中國(guó)政府正式加入世貿(mào)組織后,從2000年開(kāi)始,汽車(chē)進(jìn)口關(guān)稅將大幅度下降.若進(jìn)口一輛汽車(chē)2001年售價(jià)為30萬(wàn)元,五年后(2006年)售價(jià)為y萬(wàn)元,每年下調(diào)率平均為x%,那么y和x的函數(shù)關(guān)系式為(  )

查看答案和解析>>

中華人民共和國(guó)《道路交通安全法》中將飲酒后違法駕駛機(jī)動(dòng)車(chē)的行為分成兩個(gè)檔次:“酒后駕車(chē)”和“醉酒駕車(chē)”,其檢測(cè)標(biāo)準(zhǔn)是駕駛?cè)藛T血液中的酒精含量Q(簡(jiǎn)稱(chēng)血酒含量,單位是毫克/100毫升),當(dāng)20≤Q<80時(shí),為酒后駕車(chē);當(dāng)Q≥80時(shí),為醉酒駕車(chē)  哈爾濱市公安局交通管理部門(mén)于2010年3月的一天對(duì)某路段的一次攔查行動(dòng)中,依法檢查了200輛機(jī)動(dòng)車(chē)駕駛員的血酒含量,其中查處酒后駕車(chē)的有6人,查處醉酒駕車(chē)的有4人,依據(jù)上述材料回答下列問(wèn)題:
(1)分別寫(xiě)出違法駕車(chē)發(fā)生的頻率和醉酒駕車(chē)占違法駕車(chē)總數(shù)的百分?jǐn)?shù);
(2)從違法駕車(chē)的10人中抽取4人,求抽取到醉酒駕車(chē)人數(shù)ξ的分布列和期望;
(3)飲酒后違法駕駛機(jī)動(dòng)車(chē)極易發(fā)生交通事故,假設(shè)酒后駕車(chē)和醉酒駕車(chē)發(fā)生交通事故的概率分別是0.2和0.5,且每位駕駛員是否發(fā)生交通事故是相互獨(dú)立的  依此計(jì)算被查處的10名駕駛員中至少有一人發(fā)生交通事故的概率.

查看答案和解析>>

中國(guó)環(huán)保部部長(zhǎng)在2012年“六•五”世界環(huán)境日高層論壇上表示,國(guó)家正在加大污水處理的投入,為此四川蘭家溝污水處理站擬建一座平面圖形為矩形且面積為2000m2的四級(jí)污水處理池,長(zhǎng),寬都不能超過(guò)60米,如果四周?chē)乇诮ㄔ靻蝺r(jià)為400元/m,中間三道隔墻建造單價(jià)為300元/m,池底建造單價(jià)為100元/m2,池壁的厚度忽略不計(jì).設(shè)污水池的長(zhǎng)為x米,總造價(jià)為f(x)元.
(1)求f(x)的解析式,并求出其定義域;
(2)求f(x)的最小值,并求出此時(shí)污水池的長(zhǎng)和寬.

查看答案和解析>>

一、ABCBD  BCABD

二、11.2    12.     13.4    14.10    15. ①②③

三、16. 解:(1),             3分

由已知,得.         6分

(2)由(1)得,      8分

當(dāng)時(shí),的最小值為,             10分

,得值的集合為.   13分

17. 解:(I)取AB的中點(diǎn)O,連接OP,OC      高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。PA=PB   高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。PO高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。AB

    又在高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。中,高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。,高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。

    在高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。中,高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。,又高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。,故有高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。

      高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。   又高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。 高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。面ABC       4分

      又  PO高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。面PAB,高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。面PAB高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。面ABC              6分

(Ⅱ)以O(shè)為坐標(biāo)原點(diǎn), 分別以O(shè)B,OC,OP為高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。軸,高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。軸,高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。軸建立坐標(biāo)系,

高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。如圖,則A高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。   8分

 高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。

 設(shè)平面PAC的一個(gè)法向量為高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。。

       高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。     得高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。

  令高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。,則高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。     11分

設(shè)直線PB與平面PAC所成角為高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。 ,

于是高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專(zhuān)家。     13分

18. 解:(1);                4分

(2)消費(fèi)總額為1500元的概率是:                 5分

消費(fèi)總額為1400元的概率是:    6分

消費(fèi)總額為1300元的概率是:

,

所以消費(fèi)總額大于或等于1300元的概率是;              8分

(3),

。所以的分布列為:

0

1

2

3

0.294

0.448

0.222

0.036

數(shù)學(xué)期望是:。       13分

19. 解:∵的右焦點(diǎn) 

∴橢圓的半焦距,又,

∴橢圓的, .橢圓方程為.

(Ⅰ)當(dāng)時(shí),故橢圓方程為,      3分

(Ⅱ)依題意設(shè)直線的方程為:,

聯(lián)立  得點(diǎn)的坐標(biāo)為.      4分

代入.

設(shè),由韋達(dá)定理得,.   5分

,.

 

                7分

有實(shí)根, ∴點(diǎn)可以在圓上.        8分

(Ⅲ)假設(shè)存在滿足條件的實(shí)數(shù),

解得:.     10分

,又.即的邊長(zhǎng)分別是、 .時(shí),能使的邊長(zhǎng)是連續(xù)的自然數(shù)。      13分

20. 解:(1).                    1分

   當(dāng)時(shí),上單調(diào)遞增;                2分

當(dāng),時(shí),,上單調(diào)遞減;

時(shí),上單調(diào)遞增.            3分

綜上所述,當(dāng)時(shí),的單調(diào)遞增區(qū)間為;當(dāng)時(shí),的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.                     4分

(2)充分性:時(shí),由(1)知,在x=1處有極小值也是最小值,

。而上單調(diào)遞減,在上單調(diào)遞增,

所以上有唯一的一個(gè)零點(diǎn)x=1.                    6分

必要性:若函數(shù)f(x)存在唯一零點(diǎn),即方程=0在上有唯一解,

, 由(1)知,處有極小值也是最小值f(a),

 f(a)=0,即.                        7分

當(dāng)時(shí),,在上單調(diào)遞增;當(dāng)時(shí),

上單調(diào)遞減。,=0只有唯一解

因此=0在上有唯一解時(shí)必有

綜上:在時(shí), =0在上有唯一解的充要條件是.    9分

(3)證明:∵1<x<2, ∴.

 令,∴,11分

由(1)知,當(dāng)時(shí),,∴

.∴,                      12分

∴F(x)在(1,2)上單調(diào)遞增,∴,

!.             14分

21. (Ⅰ)解:考慮在矩陣作用下,求出變換后的三角形的頂點(diǎn)坐標(biāo),從而求得三角形的面積,可先求得,由,得點(diǎn)在矩陣作用下變換所得到的點(diǎn),同理求得在矩陣作用下變換所得到的點(diǎn)分別是,計(jì)算得△的面積為3.                7分

(Ⅱ)解:直線的極坐標(biāo)方程,則,

    即,所以直線的直角坐標(biāo)方程為;     2分

設(shè),其中,則P到直線的距離

,其中,∴ 當(dāng)時(shí),的最大值為;當(dāng)時(shí),的最小值為。         7分

(Ⅲ)解:由柯西不等式,得,    2分

.由條件,得.解得,  2分

當(dāng)且僅當(dāng) 時(shí)等號(hào)成立.代入時(shí),;時(shí),.所以,的取值范圍是.            7分

 

 


同步練習(xí)冊(cè)答案