則使M=N成立的實數(shù)對(a.b)有 A.0個 B.1個 C.2個 D.3個 查看更多

 

題目列表(包括答案和解析)

設(shè),則使M=N成立的實數(shù)對(a,b)有(     )

A     0個       B   1個          C  2個        D    無數(shù)多個

查看答案和解析>>

設(shè),則使M=N成立的實數(shù)對(a,b)有(    )
A     0個       B   1個          C  2個        D   無數(shù)多個

查看答案和解析>>

已知函數(shù)f(x)=
a(x-b)(x-b)2+c
(a≠0,b∈R,c>0),g(x)=m[f(x)]2-n(mn>0),給出下列三個命題:
①函數(shù)f(x)的圖象關(guān)于x軸上某點成中心對稱;
②存在實數(shù)p和q,使得p≤f(x)≤q對于任意的實數(shù)x恒成立;
③關(guān)于x的方程g(x)=0的解集可能為{-4,-2,0,3}.
則是真命題的有
①②
①②
.(不選、漏選、選錯均不給分)

查看答案和解析>>

對定義在區(qū)間D上的函數(shù)f(x),若存在閉區(qū)間[a,b]⊆D和常數(shù)C,使得對任意的x∈[a,b]都有f(x)=C,且對任意的x∉[a,b]都有f(x)>C恒成立,則稱函數(shù)f(x)為區(qū)間D上的“U型”函數(shù).
(1)求證函數(shù)f(x)=|x-1|+|x-3|是R上的“U型”函數(shù);
(2)設(shè)函數(shù)f(x)是(1)中的“U型”函數(shù),若不等式|t-1|+|t-2|≤f(x)對一切t∈R恒成立,求實數(shù)t的取值范圍.
(3)若函數(shù)g(x)=mx+
x2+2x+n
是區(qū)間[-2,+∞)上的“U型”函數(shù),求實數(shù)m和n的值.

查看答案和解析>>

設(shè)函數(shù),區(qū)間,集合,則使M=N成立的實數(shù)對有(  )                       

A.0個             B.1個              C.2個              D.無數(shù)多個

 

查看答案和解析>>

 

一、選擇題:

1―5 ADCBC    6―10 BDCAA

二、填空題:

11.―2   12.20   13.π   14.   15.    16.   17.①④

三、解答題:

18.解:(1)   ………………3分

   (2)記“一個標(biāo)號是1”為事件A,“另一個標(biāo)號也是1”為事件B,

所以   ………………3分

   (3)隨機變量ξ的分布列為

ξ

0

1

2

3

4

P

   (3)Eξ=2.4   ………………8分

19.(本題14分)

解:(1)變式得:   ………………4分

原式; …………3分

   (2)解1Q∠AOB=β―α,作OD⊥AB于D,

20.(本題14分)

解:建立空間坐標(biāo)系,

   (1)

   (2)平面ABD的法向量

   (3)解1  設(shè)AC與BD交于O,則OF//CM,所以CM//平面FBD,

當(dāng)P點在M或C時,三棱錐P―BFD的體積的最小。

    ………………5分

解2  設(shè)AC與BD交于O,則OF//CM,所以CM//平面FBD,

當(dāng)P點在M或C時,三棱錐P―BFD的體積的最小。

    ………………4分

21.(本題15分)

解:(1)設(shè)

   (2)解1由(1)得

解2  設(shè)直線

  • <mark id="i8idy"></mark>
  •    (3)設(shè)M,N在直線n上的射影為

    則有:

    22.(本題15分)

    解:(1)當(dāng)是常數(shù),不是單調(diào)函數(shù);

       (2)由(1)知,

       (3)因為時,

    則有成立

     

     

     

     

     

     

     

     

    數(shù)    學(xué)

     

    題號:03

    “數(shù)學(xué)史與不等式選講”模塊(10分)

    設(shè)x , y , z > 0, x + y + z = 3 , 依次證明下列不等式,

       (1)( 2 ?) £ 1;

       (2)³;

       (3)++³ 2.

     

     

     

     

    題號:04

    “矩陣與變換和坐標(biāo)系與參數(shù)方程”模塊(10分)

    已知雙曲線的中心為O,實軸、虛軸的長分別為2a,2b(a<b),若P,Q分別為雙曲線上的兩點,且OP⊥OQ.

       (1)求證: +為定值;

       (2)求△OPQ面積的最小值.

     

     

     

     

     

     

     


    同步練習(xí)冊答案