題目列表(包括答案和解析)
已知函數(shù)的圖像與軸有兩個(gè)交點(diǎn)
(1)設(shè)兩個(gè)交點(diǎn)的橫坐標(biāo)分別為試判斷函數(shù)有沒有最大值或最小值,并說明理由.
(2)若與在區(qū)間上都是減函數(shù),求實(shí)數(shù)的取值范圍.
已知函數(shù)的圖像與軸有兩個(gè)交點(diǎn)
(1)設(shè)兩個(gè)交點(diǎn)的橫坐標(biāo)分別為試判斷函數(shù)有沒有最大值或最小值,并說明理由.
(2)若與在區(qū)間上都是減函數(shù),求實(shí)數(shù)的取值范圍.
若二次函數(shù)的圖象和直線y=x無交點(diǎn),現(xiàn)有下列結(jié)論:
①方程一定沒有實(shí)數(shù)根;
②若a>0,則不等式對一切實(shí)數(shù)x都成立;
③若a<0,則必存存在實(shí)數(shù)x0,使;
④若,則不等式對一切實(shí)數(shù)都成立;
⑤函數(shù)的圖像與直線也一定沒有交點(diǎn).
其中正確的結(jié)論是 (寫出所有正確結(jié)論的編號).
(1)若曲線C1與C2沒有公共點(diǎn),求滿足條件的實(shí)數(shù)a組成的集合A;
(2)當(dāng)a∈A時(shí),平移曲線C2得到曲線C3,使得曲線C3與曲線C1相交于不同的兩點(diǎn)P1(x1,y1),P2(x2,y2),求證:a>f′().
一、填空題(每題5分,理科總分55分、文科總分60分):
1. ; 2. 理:2;文:; 3. 理:1.885;文:2;
4. 理:;文:1.885; 5. 理:;文:4; 6. 理:;文:;
7. 理:;文:; 8. 理:;文:6; 9. 理:;文:;
10. 理:1; 文:; 11. 理:;文:; 12. 文:;
二、選擇題(每題4分,總分16分):
題號
理12;文13
理13;文14
理:14;文:15
理15;文:16
答案
A
C
B
C
三、解答題:
16.(理,滿分12分)
解:因?yàn)閽佄锞的焦點(diǎn)的坐標(biāo)為,設(shè)、,
由條件,則直線的方程為,
代入拋物線方程,可得,則.
于是,.
…2
…4
…8
…12
17.(文,滿分12分)
解:因?yàn)?sub>,所以由條件可得,.
即數(shù)列是公比的等比數(shù)列.
又,
所以,.
…4
…6
…8
…12
(理)17.(文)18. (滿分14分)
解:因?yàn)?sub>
所以,
即或,
或,
又由,即
當(dāng)時(shí),或;當(dāng)時(shí),或.
所以,集合.
…3
…7
…11
…14
18.(理,滿分15分,第1小題6分,第2小題9分)
解:(1)當(dāng)時(shí),
故,,所以.
(2)證:由數(shù)學(xué)歸納法
(i)當(dāng)時(shí),易知,為奇數(shù);
(ii)假設(shè)當(dāng)時(shí),,其中為奇數(shù);
則當(dāng)時(shí),
所以,又、,所以是偶數(shù),
而由歸納假設(shè)知是奇數(shù),故也是奇數(shù).
綜上(i)、(ii)可知,的值一定是奇數(shù).
證法二:因?yàn)?sub>
當(dāng)為奇數(shù)時(shí),
則當(dāng)時(shí),是奇數(shù);當(dāng)時(shí),
因?yàn)槠渲?sub>中必能被2整除,所以為偶數(shù),
于是,必為奇數(shù);
當(dāng)為偶數(shù)時(shí),
其中均能被2整除,于是必為奇數(shù).
綜上可知,各項(xiàng)均為奇數(shù).
…3
…6
…8
…10
…14
…15
…10
…14
…15
19. (文,滿分14分)
解:如圖,設(shè)中點(diǎn)為,聯(lián)結(jié)、.
由題意,,,所以為等邊三角形,
故,且.
又,
所以.
而圓錐體的底面圓面積為,
所以圓錐體體積.
…3
…8
…10
…14
(理)19. (文)20. (滿分16分,第1小題4分,第2小題6分,第3小題6分)
解:(1)由題意,當(dāng)和之間的距離為
且此時(shí)中邊上的高為
又因?yàn)?sub>米,可得米.
所以,平方米,
即三角通風(fēng)窗的通風(fēng)面積為平方米.
(2)1如圖(1)所示,當(dāng)在矩形區(qū)域滑動(dòng),即時(shí),
的面積;
2如圖(2)所示,當(dāng)在半圓形區(qū)域滑動(dòng),即時(shí),
,故可得的面積
;
綜合可得:
(3)1當(dāng)在矩形區(qū)域滑動(dòng)時(shí),在區(qū)間上單調(diào)遞減,
則有;
2當(dāng)在半圓形區(qū)域滑動(dòng)時(shí),
,
等號成立,.
因而當(dāng)(米)時(shí),每個(gè)三角通風(fēng)窗得到最大通風(fēng)面積,最大面積為(平方米).
…2
…4
…6
…9
…10
…12
…15
…16
21(文,滿分18分,第1小題5分,第2小題6分,第3小題7分)
解:(1)設(shè)右焦點(diǎn)坐標(biāo)為().
因?yàn)殡p曲線C為等軸雙曲線,所以其漸近線必為,
由對稱性可知,右焦點(diǎn)到兩條漸近線距離相等,且.
于是可知,為等腰直角三角形,則由,
又由等軸雙曲線中,.
即,等軸雙曲線的方程為.
(2)設(shè)、為雙曲線直線的兩個(gè)交點(diǎn).
因?yàn)?sub>,直線的方向向量為,直線的方程為
.
代入雙曲線的方程,可得,
于是有
而
.
(3)假設(shè)存在定點(diǎn),使為常數(shù),其中,為直線與雙曲線的兩個(gè)交點(diǎn)的坐標(biāo).
①當(dāng)直線與軸不垂直時(shí),設(shè)直線的方程為
代入,可得.
由題意可知,,則有 ,.
于是,
要使是與無關(guān)的常數(shù),當(dāng)且僅當(dāng),此時(shí).
②當(dāng)直線與軸垂直時(shí),可得點(diǎn),,
若,亦為常數(shù).
綜上可知,在軸上存在定點(diǎn),使為常數(shù).
…3
…5
…7
…9
…11
…13
…16
…17
…18
20(理,滿分22分,第1小題4分,第2小題6分,第3小題12分)
解:(1)解法一:由題意,四邊形是直角梯形,且∥,
則與所成的角即為.
因?yàn)?sub>,又平面,
所以平面,則有.
因?yàn)?sub>,,
所以,則,
即異面直線與所成角的大小為.
解法二:如圖,以為原點(diǎn),直線為軸、直線為軸、直線為軸,
建立空間直角坐標(biāo)系.
于是有、,則有,又
則異面直線與所成角滿足,
所以,異面直線與所成角的大小為.
(2)解法一:由條件,過作,垂足為,聯(lián)結(jié).
于是有,故與所成角即為.
在平面中,以為原點(diǎn),直線為軸,直線為軸,建立平面直角坐標(biāo)系. 設(shè)動(dòng)點(diǎn),
則有
又平面
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com