題目列表(包括答案和解析)
(本題滿分13分)
某班幾位同學(xué)組成研究性學(xué)習(xí)小組,對(duì)歲的人群隨機(jī)抽取n人進(jìn)行了一次日常生活中是否
具有環(huán)保意識(shí)的調(diào)查. 若生活習(xí)慣具有環(huán)保意識(shí)的稱為“環(huán)保族”,否則稱為 “非環(huán)保族”,得到如下統(tǒng)計(jì)表:
組數(shù) | 分組 | 環(huán)保族人數(shù) | 占本組的頻率 | 本組占樣本的頻率 |
第一組 |
| 120 | 0.6 | 0.2 |
第二組 |
| 195 | p | q |
第三組 |
| 100:] | 0.5 | 0.2 |
第四組 |
| a | 0.4 | 0.15 |
第五組 |
| 30 | 0.3 | 0.1 |
第六組 |
| 15 | 0.3 | 0.05 |
(Ⅰ)求q、n、a、p的值;
(Ⅱ)從年齡段在的“環(huán)保族”中采用分層抽樣法抽取6人參加戶外環(huán)保活動(dòng),其中選取2人
作為領(lǐng)隊(duì),求選取的2名領(lǐng)隊(duì)中恰有1人年齡在的概率.
(本小題滿分12分)
某高校從參加今年自主招生考試的學(xué)生中隨機(jī)抽取容量為50的學(xué)生成績(jī)樣本,得頻率分布表如下:
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第一組 | 8 | 0.16 | |
第二組 | ① | 0.24 | |
第三組 | 15 | ② | |
第四組 | 10 | 0.20 | |
第五組 | 5 | 0.10 | |
合 計(jì) | 50 | 1.00 |
(本小題滿分12分)
第8屆中學(xué)生模擬聯(lián)合國(guó)大會(huì)將在本校舉行,為了搞好接待工作,組委會(huì)招募了12名男志愿者和18名女志愿者.將這30名志愿者的身高編成如下莖葉圖(單位:cm):
男 女
15 7 7 8 9 9 9
9 8 16 0 0 1 2 4 5 8 9
8 6 5 0 17 2 5 6
7 4 2 1 18 0
1 0 19
若男生身高在180cm以上(包括180cm)定義為“高個(gè)子”, 在180cm以下(不包括180cm)定義為“非高個(gè)子”, 女生身高在170cm以上(包括170cm)定義為“高個(gè)子”,在170cm以下(不包括170cm)定義為“非高個(gè)子”.
(1)如果用分層抽樣的方法從“高個(gè)子”和“非高個(gè)子”中抽取6人,則應(yīng)分別抽取“高個(gè)子”、“非高個(gè)子”各幾人?
(2)從(1)中抽出的6人中選2人擔(dān)任領(lǐng)座員,那么至少有一人是“高個(gè)子”的概率是多少?
(本小題滿分15分)
在參加市里主辦的科技知識(shí)競(jìng)賽的學(xué)生中隨機(jī)選取了40名學(xué)生的成績(jī)作為樣本,這40名學(xué)生的成績(jī)?nèi)吭?0分至100分之間,現(xiàn)將成績(jī)按如下方式分成6組:第一組,成績(jī)大于等于40分且小于50分;第二組,成績(jī)大于等于50分且小于60分;……第六組,成績(jī)大于等于90分且小于等于100分,據(jù)此繪制了如圖所示的頻率分布直方圖。
在選取的40名學(xué)生中。
(I)求成績(jī)?cè)趨^(qū)間內(nèi)的學(xué)生人數(shù);
(II)從成績(jī)大于等于80分的學(xué)生中隨機(jī)選2名學(xué)生,求至少有1名學(xué)生成績(jī)?cè)趨^(qū)間[90,100]內(nèi)的概率。
(本小題滿分12分)
第8屆中學(xué)生模擬聯(lián)合國(guó)大會(huì)將在本校舉行,為了搞好接待工作,組委會(huì)招募了12名男志愿者和18名女志愿者.將這30名志愿者的身高編成如下莖葉圖(單位:cm):
男 女
15 7 7 8 9 9 9
9 8 16 0 0 1 2 4 5 8 9
8 6 5 0 17 2 5 6
7 4 2 1 18 0
1 0 19
若男生身高在180cm以上(包括180cm)定義為“高個(gè)子”, 在180cm以下(不包括180cm)定義為“非高個(gè)子”, 女生身高在170cm以上(包括170cm)定義為“高個(gè)子”,在170cm以下(不包括170cm)定義為“非高個(gè)子”.
(1)如果用分層抽樣的方法從“高個(gè)子”和“非高個(gè)子”中抽取6人,則應(yīng)分別抽取“高個(gè)子”、“非高個(gè)子”各幾人?
(2)從(1)中抽出的6人中選2人擔(dān)任領(lǐng)座員,那么至少有一人是“高個(gè)子”的概率是多少?
一、填空題(每題5分,理科總分55分、文科總分60分):
1. ; 2. 理:2;文:; 3. 理:1.885;文:2;
4. 理:;文:1.885; 5. 理:;文:4; 6. 理:;文:;
7. 理:;文:; 8. 理:;文:6; 9. 理:;文:;
10. 理:1; 文:; 11. 理:;文:; 12. 文:;
二、選擇題(每題4分,總分16分):
題號(hào)
理12;文13
理13;文14
理:14;文:15
理15;文:16
答案
A
C
B
C
三、解答題:
16.(理,滿分12分)
解:因?yàn)閽佄锞的焦點(diǎn)的坐標(biāo)為,設(shè)、,
由條件,則直線的方程為,
代入拋物線方程,可得,則.
于是,.
…2
…4
…8
…12
17.(文,滿分12分)
解:因?yàn)?sub>,所以由條件可得,.
即數(shù)列是公比的等比數(shù)列.
又,
所以,.
…4
…6
…8
…12
(理)17.(文)18. (滿分14分)
解:因?yàn)?sub>
所以,
即或,
或,
又由,即
當(dāng)時(shí),或;當(dāng)時(shí),或.
所以,集合.
…3
…7
…11
…14
18.(理,滿分15分,第1小題6分,第2小題9分)
解:(1)當(dāng)時(shí),
故,,所以.
(2)證:由數(shù)學(xué)歸納法
(i)當(dāng)時(shí),易知,為奇數(shù);
(ii)假設(shè)當(dāng)時(shí),,其中為奇數(shù);
則當(dāng)時(shí),
所以,又、,所以是偶數(shù),
而由歸納假設(shè)知是奇數(shù),故也是奇數(shù).
綜上(i)、(ii)可知,的值一定是奇數(shù).
證法二:因?yàn)?sub>
當(dāng)為奇數(shù)時(shí),
則當(dāng)時(shí),是奇數(shù);當(dāng)時(shí),
因?yàn)槠渲?sub>中必能被2整除,所以為偶數(shù),
于是,必為奇數(shù);
當(dāng)為偶數(shù)時(shí),
其中均能被2整除,于是必為奇數(shù).
綜上可知,各項(xiàng)均為奇數(shù).
…3
…6
…8
…10
…14
…15
…10
…14
…15
19. (文,滿分14分)
解:如圖,設(shè)中點(diǎn)為,聯(lián)結(jié)、.
由題意,,,所以為等邊三角形,
故,且.
又,
所以.
而圓錐體的底面圓面積為,
所以圓錐體體積.
…3
…8
…10
…14
(理)19. (文)20. (滿分16分,第1小題4分,第2小題6分,第3小題6分)
解:(1)由題意,當(dāng)和之間的距離為
且此時(shí)中邊上的高為
又因?yàn)?sub>米,可得米.
所以,平方米,
即三角通風(fēng)窗的通風(fēng)面積為平方米.
(2)1如圖(1)所示,當(dāng)在矩形區(qū)域滑動(dòng),即時(shí),
的面積;
2如圖(2)所示,當(dāng)在半圓形區(qū)域滑動(dòng),即時(shí),
,故可得的面積
;
綜合可得:
(3)1當(dāng)在矩形區(qū)域滑動(dòng)時(shí),在區(qū)間上單調(diào)遞減,
則有;
2當(dāng)在半圓形區(qū)域滑動(dòng)時(shí),
,
等號(hào)成立,.
因而當(dāng)(米)時(shí),每個(gè)三角通風(fēng)窗得到最大通風(fēng)面積,最大面積為(平方米).
…2
…4
…6
…9
…10
…12
…15
…16
21(文,滿分18分,第1小題5分,第2小題6分,第3小題7分)
解:(1)設(shè)右焦點(diǎn)坐標(biāo)為().
因?yàn)殡p曲線C為等軸雙曲線,所以其漸近線必為,
由對(duì)稱性可知,右焦點(diǎn)到兩條漸近線距離相等,且.
于是可知,為等腰直角三角形,則由,
又由等軸雙曲線中,.
即,等軸雙曲線的方程為.
(2)設(shè)、為雙曲線直線的兩個(gè)交點(diǎn).
因?yàn)?sub>,直線的方向向量為,直線的方程為
.
代入雙曲線的方程,可得,
于是有
而
.
(3)假設(shè)存在定點(diǎn),使為常數(shù),其中,為直線與雙曲線的兩個(gè)交點(diǎn)的坐標(biāo).
①當(dāng)直線與軸不垂直時(shí),設(shè)直線的方程為
代入,可得.
由題意可知,,則有 ,.
于是,
要使是與無(wú)關(guān)的常數(shù),當(dāng)且僅當(dāng),此時(shí).
②當(dāng)直線與軸垂直時(shí),可得點(diǎn),,
若,亦為常數(shù).
綜上可知,在軸上存在定點(diǎn),使為常數(shù).
…3
…5
…7
…9
…11
…13
…16
…17
…18
20(理,滿分22分,第1小題4分,第2小題6分,第3小題12分)
解:(1)解法一:由題意,四邊形是直角梯形,且∥,
則與所成的角即為.
因?yàn)?sub>,又平面,
所以平面,則有.
因?yàn)?sub>,,
所以,則,
即異面直線與所成角的大小為.
解法二:如圖,以為原點(diǎn),直線為軸、直線為軸、直線為軸,
建立空間直角坐標(biāo)系.
于是有、,則有,又
則異面直線與所成角滿足,
所以,異面直線與所成角的大小為.
(2)解法一:由條件,過(guò)作,垂足為,聯(lián)結(jié).
于是有,故與所成角即為.
在平面中,以為原點(diǎn),直線為軸,直線為軸,建立平面直角坐標(biāo)系. 設(shè)動(dòng)點(diǎn),
則有
又平面
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com