設(shè)Sn是等差數(shù)列前n項(xiàng)和.符合.則 ( ) 查看更多

 

題目列表(包括答案和解析)

設(shè)Sn是等比數(shù)列{an}的前n項(xiàng)和,對(duì)于等比數(shù)列{an},有命題P:若S3,S9,S6成等差數(shù)列,則a2,a8,a5成等差數(shù)列成立;對(duì)于命題q:若Sm,Sn,Sl成等差數(shù)列,則________成等差數(shù)列.請(qǐng)將命題q補(bǔ)充完整,使它也是真命題.(只要一個(gè)符合要求的答案即可)

查看答案和解析>>

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S10=55,S20=210.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)學(xué)公式,是否存在m、k(k>m≥2,k,m∈N*),使得b1、bm、bk成等比數(shù)列.若存在,求出所有符合條件的m、k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

數(shù)列an的前n項(xiàng)和為Sn,Sn=2an-3n(n∈N*).
(Ⅰ)證明數(shù)列an+3是等比數(shù)列,求出數(shù)列an的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)學(xué)公式,求數(shù)列bn的前n項(xiàng)和Tn;
(Ⅲ)判斷數(shù)列an中是否存在構(gòu)成等差數(shù)列的三項(xiàng)?若存在,求出一組符合條件的項(xiàng);若不存在,說(shuō)明理由.

查看答案和解析>>

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S10=55,S20=210。
(1)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè),是否存在m,k(k>m≥2,m,k∈N*),使得b1,bm,bk成等比數(shù)列,若存在,求出所有符合條件的m,k的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

數(shù)列an的前n項(xiàng)和為Sn,Sn=2an-3n(n∈N*).
(Ⅰ)證明數(shù)列an+3是等比數(shù)列,求出數(shù)列an的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列bn的前n項(xiàng)和Tn
(Ⅲ)判斷數(shù)列an中是否存在構(gòu)成等差數(shù)列的三項(xiàng)?若存在,求出一組符合條件的項(xiàng);若不存在,說(shuō)明理由.

查看答案和解析>>

1.D   2.C   3.C   4.D   5.A  6.D   7.B   8.C   9.A   10.B

11.B     12.D

13.      14.       15.  11       16.

                                                                              

17.(本小題滿分12分)

解:(1)

  又

 

   (2)

  又

  

18.(本小題滿分12分)

解:(1)

    ∴

(2)∵

   最小正周期為

的單調(diào)遞增區(qū)間為

19.(本小題滿分12分)

  解:(1成等差數(shù)列,

    

    

     

    

  2

    

         

         

          

         

 

20、(本小題滿分12分)

(I)解:由

      

      

   (II)由,

       ∴數(shù)列{}是以S1+1=2為首項(xiàng),以2為公比的等比數(shù)列,

      

       *當(dāng)n=1時(shí)a1=1滿足

   (III)

       ,②

       ①-②得

       則.

21、(本小題滿分12分) (1)證明:

  (即的對(duì)稱軸

  

  

   (2)由(1).

  

  經(jīng)判斷:極小

  為0;  

  .

22、(本小題滿分12分)

解:(1)由橢圓定義及已知條件知2a=|F1B|+|F2B|=10,∴a=5.

又c=4,∴b2=a2-c2=9.

故橢圓方程為+=1.                                                

(2)由點(diǎn)B在橢圓上,可知|F2B|=|yB|=,而橢圓的右準(zhǔn)線方程為x=,離心率為,

由橢圓定義有|F2A|=(-x1),|F2C|=(-x2).

依題意|F2A|+|F2C|=2|F2B|.

(-x1)+(-x2)=2×.

∴x1+x2=8.

設(shè)弦AC的中點(diǎn)為P(x0,y0),則x0==4,

即弦AC的中點(diǎn)的橫坐標(biāo)為4.                                              

(3)由A(x1,y1),C(x2,y2)在橢圓上得9x12+25y12=9×25,9x22+25y22=9×25.

兩式相減整理得9()+25()()=0(x1≠x2).

=x0=4,=y0,=-(k≠0)代入得

9×4+25y0(-)=0,即k=y0.

由于P(4,y0)在弦AC的垂直平分線上,

∴y0=4k+m,于是m=y0-4k=y0-y0=-y0.

而-<y0<,∴-<m<.          

 

 

 

 


同步練習(xí)冊(cè)答案