17. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分10分)等體積的球和正方體,試比較它們表面積的大小關系.

查看答案和解析>>

(本小題滿分10分)數(shù)學的美是令人驚異的!如三位數(shù)153,它滿足153=13+53+33,即這個整數(shù)等于它各位上的數(shù)字的立方的和,我們稱這樣的數(shù)為“水仙花數(shù)”.請您設計一個算法,找出大于100,小于1000的所有“水仙花數(shù)”.
(1)用自然語言寫出算法;
(2)畫出流程圖.

查看答案和解析>>

(本小題滿分10分)

已知函數(shù)

   (Ⅰ)求函數(shù)的最小正周期;

   (Ⅱ)當時,求函數(shù)的最大值和最小值.

查看答案和解析>>

(本小題滿分10分)已知A,B,C,分別是的三個角,向量

與向量垂直。w.w.w.k.s.5.u.c.o.m        

   (1)求的大;

   (2)求函數(shù)的最大值。

查看答案和解析>>

(本小題滿分10分)

      已知的內(nèi)角、、所對的邊分別為、,向量

,且,為銳角.

     (Ⅰ)求角的大小;

     (Ⅱ)若,求的面積w.w.w.k.s.5.u.c

查看答案和解析>>

1.D   2.C   3.C   4.D   5.A  6.D   7.B   8.C   9.A   10.B

11.B     12.D

13.      14.       15.  11       16.

                                                                              

17.(本小題滿分12分)

解:(1)

  又

 

   (2)

  又

  

18.(本小題滿分12分)

解:(1)

    ∴

(2)∵

   最小正周期為

的單調(diào)遞增區(qū)間為

19.(本小題滿分12分)

  解:(1成等差數(shù)列,

    

    

     

    

  2

    

         

         

          

         

 

20、(本小題滿分12分)

(I)解:由

       ,

      

   (II)由,

       ∴數(shù)列{}是以S1+1=2為首項,以2為公比的等比數(shù)列,

      

       *當n=1時a1=1滿足

   (III)

       ,②

       ①-②得,

       則.

21、(本小題滿分12分) (1)證明:

  (即的對稱軸

  

  

   (2)由(1).

  

  經(jīng)判斷:極小

  為0;  

  .

22、(本小題滿分12分)

解:(1)由橢圓定義及已知條件知2a=|F1B|+|F2B|=10,∴a=5.

又c=4,∴b2=a2-c2=9.

故橢圓方程為+=1.                                                

(2)由點B在橢圓上,可知|F2B|=|yB|=,而橢圓的右準線方程為x=,離心率為,

由橢圓定義有|F2A|=(-x1),|F2C|=(-x2).

依題意|F2A|+|F2C|=2|F2B|.

(-x1)+(-x2)=2×.

∴x1+x2=8.

設弦AC的中點為P(x0,y0),則x0==4,

即弦AC的中點的橫坐標為4.                                              

(3)由A(x1,y1),C(x2,y2)在橢圓上得9x12+25y12=9×25,9x22+25y22=9×25.

兩式相減整理得9()+25()()=0(x1≠x2).

=x0=4,=y0=-(k≠0)代入得

9×4+25y0(-)=0,即k=y0.

由于P(4,y0)在弦AC的垂直平分線上,

∴y0=4k+m,于是m=y0-4k=y0-y0=-y0.

而-<y0<,∴-<m<.          

 

 

 

 


同步練習冊答案