解得x=9.因?yàn)閤=9∈[1,10],y只有一個(gè)極值點(diǎn),所以它是最值點(diǎn),即在相同的時(shí)間內(nèi),生產(chǎn)第9檔次的產(chǎn)品利潤(rùn)最大,最大利潤(rùn)為864元. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)處取得極值2.

⑴ 求函數(shù)的解析式;

⑵ 若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;

【解析】第一問中利用導(dǎo)數(shù)

又f(x)在x=1處取得極值2,所以,

所以

第二問中,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得

解:⑴ 求導(dǎo),又f(x)在x=1處取得極值2,所以,即,所以…………6分

⑵ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得,                …………9分

當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有 

                                                …………12分

.綜上所述,當(dāng)時(shí),f(x)在(m,2m+1)上單調(diào)遞增,當(dāng)時(shí),f(x)在(m,2m+1)上單調(diào)遞減;則實(shí)數(shù)m的取值范圍是

 

查看答案和解析>>

設(shè)函數(shù)f(x)=lnx,gx)=ax+,函數(shù)f(x)的圖像與x軸的交點(diǎn)也在函數(shù)g(x)的圖像上,且在此點(diǎn)處f(x)與g(x)有公切線.[來源:學(xué)。科。網(wǎng)]

(Ⅰ)求a、b的值; 

(Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來源:學(xué),科,網(wǎng)Z,X,X,K]

【解析】第一問解:因?yàn)?i>f(x)=lnx,gx)=ax+

則其導(dǎo)數(shù)為

由題意得,

第二問,由(I)可知,令。

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有

解:因?yàn)?i>f(x)=lnx,gx)=ax+

則其導(dǎo)數(shù)為

由題意得,

(11)由(I)可知,令。

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有

 

查看答案和解析>>

已知

(1)求函數(shù)上的最小值

(2)對(duì)一切的恒成立,求實(shí)數(shù)a的取值范圍

(3)證明對(duì)一切,都有成立

【解析】第一問中利用

當(dāng)時(shí),單調(diào)遞減,在單調(diào)遞增,當(dāng),即時(shí),,

第二問中,,則設(shè)

,單調(diào)遞增,,,單調(diào)遞減,,因?yàn)閷?duì)一切,恒成立, 

第三問中問題等價(jià)于證明,,

由(1)可知的最小值為,當(dāng)且僅當(dāng)x=時(shí)取得

設(shè),則,易得。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對(duì)一切,都有成立

解:(1)當(dāng)時(shí),單調(diào)遞減,在單調(diào)遞增,當(dāng),即時(shí),,

                 …………4分

(2),則設(shè),

單調(diào)遞增,,,單調(diào)遞減,,因?yàn)閷?duì)一切恒成立,                                             …………9分

(3)問題等價(jià)于證明,,

由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時(shí)取得

設(shè),則,易得。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對(duì)一切,都有成立

 

查看答案和解析>>

已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過點(diǎn)C(2,2),且拋物線的焦點(diǎn)為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時(shí),求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

解:(Ⅰ)設(shè)橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    當(dāng)m=3時(shí),直線l方程為y=-x+3,此時(shí),x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當(dāng)m=-3時(shí),直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>


同步練習(xí)冊(cè)答案