所以函數(shù)的單調(diào)遞增區(qū)間為.------8分 查看更多

 

題目列表(包括答案和解析)

函數(shù)的單調(diào)遞增區(qū)是(    )

A.                                         B.

C. 和          D.

 

查看答案和解析>>

已知函數(shù),(),

(1)若曲線與曲線在它們的交點(1,c)處具有公共切線,求a,b的值

(2)當時,若函數(shù)的單調(diào)區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值。

【解析】(1), 

∵曲線與曲線在它們的交點(1,c)處具有公共切線

(2)令,當時,

,得

時,的情況如下:

x

+

0

-

0

+

 

 

所以函數(shù)的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為

,即時,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上的最大值為,

,即時,函數(shù)在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間上單調(diào)遞減,在區(qū)間上的最大值為

,即a>6時,函數(shù)在區(qū)間內(nèi)單調(diào)遞贈,在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間上單調(diào)遞增。又因為

所以在區(qū)間上的最大值為。

 

查看答案和解析>>

設函數(shù)

(I)求的單調(diào)區(qū)間;

(II)當0<a<2時,求函數(shù)在區(qū)間上的最小值.

【解析】第一問定義域為真數(shù)大于零,得到.                            

,則,所以,得到結論。

第二問中, ().

.                          

因為0<a<2,所以,.令 可得

對參數(shù)討論的得到最值。

所以函數(shù)上為減函數(shù),在上為增函數(shù).

(I)定義域為.           ………………………1分

.                            

,則,所以.  ……………………3分          

因為定義域為,所以.                            

,則,所以

因為定義域為,所以.          ………………………5分

所以函數(shù)的單調(diào)遞增區(qū)間為

單調(diào)遞減區(qū)間為.                         ………………………7分

(II) ().

.                          

因為0<a<2,所以,.令 可得.…………9分

所以函數(shù)上為減函數(shù),在上為增函數(shù).

①當,即時,            

在區(qū)間上,上為減函數(shù),在上為增函數(shù).

所以.         ………………………10分  

②當,即時,在區(qū)間上為減函數(shù).

所以.               

綜上所述,當時,;

時,

 

查看答案和解析>>

(2008•奉賢區(qū)二模)已知函數(shù)y=sin(2x+
π
4
)
,當它的函數(shù)值大于零時,該函數(shù)的單調(diào)遞增區(qū)間是( 。

查看答案和解析>>

函數(shù)y=4x-
1
3
x3的單調(diào)遞增區(qū)是(  )

查看答案和解析>>


同步練習冊答案