因為 由(Ⅰ)知. 而. 查看更多

 

題目列表(包括答案和解析)

(2006•黃浦區(qū)二模)已知函數(shù)y=f(x)的定義域為R+,對任意x,y∈R+,有恒等式f(xy)=f(x)+f(y);且當(dāng)x>1時,f(x)<0.
(1)求f(1)的值;
(2)求證:當(dāng)x∈R+時,恒有f(
1x
)=-f(x)
;
(3)求證:f(x)在(0,+∞)上為減函數(shù);
(4)由上一小題知:f(x)是(0,+∞)上的減函數(shù),因而f(x)的反函數(shù)f-1(x)存在,試根據(jù)已知恒等式猜想f-1(x)具有的性質(zhì),并給出證明.

查看答案和解析>>

已知函數(shù)y=f(x)的定義域為R+,對任意x,y∈R+,有恒等式f(xy)=f(x)+f(y);且當(dāng)x>1時,f(x)<0.
(1)求f(1)的值;
(2)求證:當(dāng)x∈R+時,恒有數(shù)學(xué)公式
(3)求證:f(x)在(0,+∞)上為減函數(shù);
(4)由上一小題知:f(x)是(0,+∞)上的減函數(shù),因而f(x)的反函數(shù)f-1(x)存在,試根據(jù)已知恒等式猜想f-1(x)具有的性質(zhì),并給出證明.

查看答案和解析>>

已知函數(shù)y=f(x)的定義域為R+,對任意x,y∈R+,有恒等式f(xy)=f(x)+f(y);且當(dāng)x>1時,f(x)<0.
(1)求f(1)的值;
(2)求證:當(dāng)x∈R+時,恒有f(
1
x
)=-f(x)
;
(3)求證:f(x)在(0,+∞)上為減函數(shù);
(4)由上一小題知:f(x)是(0,+∞)上的減函數(shù),因而f(x)的反函數(shù)f-1(x)存在,試根據(jù)已知恒等式猜想f-1(x)具有的性質(zhì),并給出證明.

查看答案和解析>>

已知函數(shù)y=f(x)的定義域為R+,對任意x,y∈R+,有恒等式f(xy)=f(x)+f(y);且當(dāng)x>1時,f(x)<0.
(1)求f(1)的值;
(2)求證:當(dāng)x∈R+時,恒有;
(3)求證:f(x)在(0,+∞)上為減函數(shù);
(4)由上一小題知:f(x)是(0,+∞)上的減函數(shù),因而f(x)的反函數(shù)f-1(x)存在,試根據(jù)已知恒等式猜想f-1(x)具有的性質(zhì),并給出證明.

查看答案和解析>>

已知中,,.設(shè),記.

(1)   求的解析式及定義域;

(2)設(shè),是否存在實數(shù),使函數(shù)的值域為?若存在,求出的值;若不存在,請說明理由.

【解析】第一問利用(1)如圖,在中,由,,

可得

又AC=2,故由正弦定理得

 

(2)中

可得.顯然,,則

1當(dāng)m>0的值域為m+1=3/2,n=1/2

2當(dāng)m<0,不滿足的值域為;

因而存在實數(shù)m=1/2的值域為.

 

查看答案和解析>>


同步練習(xí)冊答案