21.本小題滿分12分.已知圓A :.N為圓上的一動(dòng)點(diǎn).點(diǎn)B1.0..點(diǎn)M是BN的中點(diǎn).點(diǎn)P在線段AN上.且. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

已知橢圓C:(a>b>0)的離心率為,其左、右焦點(diǎn)分別是F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)的一點(diǎn),且|OP|=,·(點(diǎn)O為坐標(biāo)原點(diǎn)).

   (Ⅰ)求橢圓C的方程;

   (Ⅱ)直線y=x與橢圓C在第一象限交于A點(diǎn),若橢圓C上兩點(diǎn)M、N使

λ,λ∈(0,2)求△OMN面積的最大值.

 

 

查看答案和解析>>

(本小題滿分12分)已知橢圓C:(a>b>0)的離心率為,其左、右焦點(diǎn)分別是F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)的一點(diǎn),且|OP|=,·(點(diǎn)O為坐標(biāo)原點(diǎn)).

   (Ⅰ)求橢圓C的方程;

   (Ⅱ)直線y=x與橢圓C在第一象限交于A點(diǎn),若橢圓C上兩點(diǎn)M、N使=λ,λ∈(0,2)求△OMN面積的最大值.

查看答案和解析>>

(本小題滿分12分)已知橢圓C:(a>b>0)的離心率為,其左、右焦點(diǎn)分別是F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)的一點(diǎn),且|OP|=·(點(diǎn)O為坐標(biāo)原點(diǎn)).

   (Ⅰ)求橢圓C的方程;

   (Ⅱ)直線y=x與橢圓C在第一象限交于A點(diǎn),若橢圓C上兩點(diǎn)M、N使=λ,λ∈(0,2)求△OMN面積的最大值.

查看答案和解析>>

(本小題滿分12分)已知橢圓C:(a>b>0)的離心率為,其左、右焦點(diǎn)分別是F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)的一點(diǎn),且|OP|=·(點(diǎn)O為坐標(biāo)原點(diǎn)).

   (Ⅰ)求橢圓C的方程;

   (Ⅱ)直線y=x與橢圓C在第一象限交于A點(diǎn),若橢圓C上兩點(diǎn)M、N使=λ,λ∈(0,2)求△OMN面積的最大值.

查看答案和解析>>

(本小題滿分12分)已知橢圓C:(a>b>0)的離心率為,其左、右焦點(diǎn)分別是F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)的一點(diǎn),且|OP|=·(點(diǎn)O為坐標(biāo)原點(diǎn)).

   (Ⅰ)求橢圓C的方程;

   (Ⅱ)直線y=x與橢圓C在第一象限交于A點(diǎn),若橢圓C上兩點(diǎn)M、N使=λ,λ∈(0,2)求△OMN面積的最大值.

查看答案和解析>>

17.本題滿分14分.已知函數(shù)。

(1)       求函數(shù)上的值域;

(2)       在中,若,求的值。

16

21.本小題滿分12分.

已知函數(shù)fx.=lnx-,

(I)        求函數(shù)fx.的單調(diào)增區(qū)間;

(II)     若函數(shù)fx.在[1,e]上的最小值為,求實(shí)數(shù)a的值。

3.已知,則的值為    .

A.-2          B.-1        C.1             D.2

19.解:1.∵,,

,

,.

2.∵,∴

,∴,

,∴,

,

.

20.此題主要考查數(shù)列.等差.等比數(shù)列的概念.?dāng)?shù)列的遞推公式.?dāng)?shù)列前n項(xiàng)和的求法

  同時(shí)考查學(xué)生的分析問(wèn)題與解決問(wèn)題的能力,邏輯推理能力及運(yùn)算能力.

解:I.

    

Ⅱ.

16.本題滿分14分.

解:1.連,四邊形菱形   ,

www.ks5u.com

  的中點(diǎn),

               ,

                   

2.當(dāng)時(shí),使得,連,交,則 的中點(diǎn),又上中線,為正三角形的中心,令菱形的邊長(zhǎng)為,則,。

           

       

   即:   。

22.本小題滿分14分.

解:I.1.,

    !1分

    處取得極值,

    …………………………………………………2分

    即

    ………………………………………4分

   ii.在,

    由

          

           ,

   

    當(dāng);

    ;

    .……………………………………6分

    面

    ,

    且

    又

    ,

   

    ……………9分

   Ⅱ.當(dāng),

    ①;

    ②當(dāng)時(shí),

    ,

   

    ③,

    從面得;

    綜上得,.………………………14分

 

 


同步練習(xí)冊(cè)答案