20. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點(diǎn).

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項(xiàng)公式an

   (Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:

   (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時(shí),求弦長|AB|的取值范圍.

查看答案和解析>>

一.選擇題

題號

10

11

12

答案

C

C

A

D

C

B

A

D

D

A

二.13.      14.      15.     16.(萬元)

三.17.(I) 由

代入 得:     

整理得:                  (5分)

(II)由 

        由余弦定理得:

       -----------------------------   (9分)

  

       ------   (12分)

18.(Ⅰ)  的分布列.   

   2

   3

   4

   5

    6

p

 

 

                                - --------- ------   (4分)

(Ⅱ)設(shè)擲出的兩枚骰子的點(diǎn)數(shù)同是為事件

     同擲出1的概率,同擲出2的概率,同擲出3的概率

所以,擲出的兩枚骰子的點(diǎn)數(shù)相同的概率為P= 。ǎ阜郑

(Ⅲ)

時(shí))

 

  2

  3

  4

  5 

 。

 

   3

   6

    6

   6

    6

 p

   

 

 

 

 

時(shí))

 

  2

  3

  4

  5 

 。

 

   2

   5

    8

   8

    8

 p

   

 

 

 

 

時(shí))

 

  2

  3

  4

  5 

 。

 

   1

   4

    7

  10

    10

 p

   

 

 

 

 

時(shí), 最大為                             (12分)

19.(Ⅰ)

   

    兩兩相互垂直, 連結(jié)并延長交于F.

   

 

    同理可得

  

  

  

          ------------  (6分)

(Ⅱ)的重心

    F是SB的中點(diǎn)

  

  

   梯形的高

        ---     (12分)

       【注】可以用空間向量的方法

20.設(shè)2,f (a1),  f (a2),  f (a3), …,f (an),  2n+4的公差為d,則2n+4=2+(n+2-1)d   d=2,

 

……………………(4分)

   (2),

 

       --------------------              (8分)

 

21.(Ⅰ)∵直線的斜率為1,拋物線的焦點(diǎn) 

    ∴直線的方程為

   由

  設(shè)

  則

  又

       

  故 夾角的余弦值為    -----------------  。ǎ斗郑

(Ⅱ)由

  即得:

  由 

從而得直線的方程為

 ∴軸上截距為

  ∵的減函數(shù)

∴  從而得

軸上截距的范圍是  ------------ (12分)

22.(Ⅰ) 

    在直線上,

                ??????????????     。ǎ捶郑

(Ⅱ)

 上是增函數(shù),上恒成立

 所以得         ??????????????? 。ǎ阜郑

(Ⅲ)的定義域是,

①當(dāng)時(shí),上單增,且,無解;

、诋(dāng)時(shí),上是增函數(shù),且,

有唯一解;

③當(dāng)時(shí),

那么在單減,在單增,

    時(shí),無解;

     時(shí),有唯一解 

     時(shí),

     那么在上,有唯一解

而在上,設(shè)

  

即得在上,有唯一解.

綜合①②③得:時(shí),有唯一解;

        時(shí),無解;

       時(shí),有且只有二解.

 

               ??????????????    。ǎ保捶郑

 


同步練習(xí)冊答案