16. 已知mÎR.設(shè)P:不等式,Q:函數(shù)在上有極值.求使P正確且Q正確的m的取值范圍. 查看更多

 

題目列表(包括答案和解析)

(本題滿分14分
A.選修4-4:極坐標(biāo)與參數(shù)方程在極坐標(biāo)系中,直線l 的極坐標(biāo)方程為θ=
π
3
(ρ∈R ),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α 參數(shù)).求直線l 和曲線C的交點(diǎn)P的直角坐標(biāo).
B.選修4-5:不等式選講
設(shè)實(shí)數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時(shí)x,y,z 的值.

查看答案和解析>>

(本題滿分14分)已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請(qǐng)求出一個(gè)長(zhǎng)度為的區(qū)間,使

;如果沒有,請(qǐng)說明理由?(注:區(qū)間的長(zhǎng)度為).

 

查看答案和解析>>

(本題滿分14分)已知,且以下命題都為真命題:

命題 實(shí)系數(shù)一元二次方程的兩根都是虛數(shù);

命題 存在復(fù)數(shù)同時(shí)滿足.

求實(shí)數(shù)的取值范圍.

查看答案和解析>>

(本題滿分14分)已知如圖:平行四邊形ABCD中,,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點(diǎn).

(1)求證:GH∥平面CDE;

(2)若,求四棱錐F-ABCD的體積.

 

 

 

查看答案和解析>>

(本題滿分14分).如圖,ABCD中,AB=1,AD=2AB,∠ADC=,EC⊥面ABCD,

EF∥AC, EF=, CE=1

(1)求證:AF∥面BDE

(2)求CF與面DCE所成角的正切值。

 

查看答案和解析>>

一、填空題:

1.    2. 三    3.  1    4.  25  5.    6. -1  7.     8. (1,0)

9.    10.  8    11. 1   12. (0,2)  13. 2026    14. ①②③

二、解答題:

15. 解:(1)因?yàn)?sub>,,所以

…………………………4

            ……………………………………………………..6分

因此,當(dāng),即)時(shí),取得最大值;…8分

(2)由,兩邊平方得

,即.……………………………………………12分

因此,.……………………………14分

 

16.解:由已知不等式得

       、

或             、

不等式①的解為

不等式②的解為…………………………………………………4分

因?yàn),?duì)時(shí),P是正確的………………………..6分

對(duì)函數(shù)求導(dǎo)…8分

,即

當(dāng)且僅當(dāng)D>0時(shí),函數(shù)f()在(-¥,+¥)上有極值

,

因?yàn),?dāng)時(shí),Q是正確的………………………………………………12分

綜上,使P正確且Q正確時(shí),實(shí)數(shù)m的取值范圍為(-¥,-1)È……….14分

 

17.解:(1)因?yàn)楹瘮?shù)的圖象關(guān)于原點(diǎn)對(duì)稱,所以,

,得……………………………………….2分

當(dāng)時(shí),舍去;

當(dāng)時(shí),,令,解得.

所以符合條件的m值為-1 …………………………………………………………………4分

(2)由(1)得,任取,

……………………6分

   ∴,

………………………………………………………………….8分

∴當(dāng)時(shí),,此時(shí)為增函數(shù);

當(dāng)時(shí),,此時(shí)為減函數(shù)…10分

(3)由(2)知,當(dāng)時(shí)上為減函數(shù);同理在上也為減函數(shù)

當(dāng)時(shí),與已知矛盾,舍去;………………12分

當(dāng)時(shí),因?yàn)楹瘮?shù)的值域?yàn)?sub>

,解得,……………………………………14分

18.解:(1)由,令,則,又,所以.

,則.  …………………………………………………………………………………….2分

當(dāng)時(shí),由,可得. 即..6分

所以是以為首項(xiàng),為公比的等比數(shù)列,于是. ……8分

(2)數(shù)列為等差數(shù)列,公差,可得. ….10分

從而. ……………………………………………..12分

……….16分

19.解:(1)依題意知汽車從甲地勻速行駛到乙地所用時(shí)間為,全程運(yùn)輸成本為 ……………………………………….4分

故所求函數(shù)及其定義域?yàn)?sub> ………………………….6分

(2)依題意知a,v都為正數(shù),故有

當(dāng)且僅當(dāng).即時(shí)上式中等號(hào)成立………………………...8分

(1)若,即時(shí)則當(dāng)時(shí),全程運(yùn)輸成本y最小.10分

(2)若,即時(shí),則當(dāng)時(shí),有

.

。也即當(dāng)v=100時(shí),全程運(yùn)輸成本y最小.…….14分

綜上知,為使全程運(yùn)輸成本y最小,當(dāng)時(shí)行駛速度應(yīng)為千米/時(shí);

當(dāng)時(shí)行駛速度應(yīng)為v=100千米/時(shí)。………………………………………………16分

20.解: (1)  ,當(dāng),,單調(diào)遞減,當(dāng),單調(diào)遞增.………………………………………………………………..2分

,t無解;

,即時(shí),;

,即時(shí),上單調(diào)遞增,

所以.…………………………………………………………..6分

(2)  ,則,………………………………………..8分

設(shè),則,,單調(diào)遞減,,單調(diào)遞增,所以……………………….10分

因?yàn)閷?duì)一切恒成立,所以;………………..12分

(3) 問題等價(jià)于證明,由⑴可知的最小值是,當(dāng)且僅當(dāng)時(shí)取到………………………………………………………….14分

設(shè),則,易得,當(dāng)且僅當(dāng)時(shí)取到,從而對(duì)一切,都有成立.……………………………..16分

 

 


同步練習(xí)冊(cè)答案