[評析]該題無論從直接還是間接思路.都要進(jìn)行三級分類討論.體現(xiàn)為試題很難.難度為0.18.按照當(dāng)年.難度低于0.2的.應(yīng)該算作廢題.結(jié)論:考查單一的知識與思想.層數(shù)不能超過三級. 查看更多

 

題目列表(包括答案和解析)

△ABC中,內(nèi)角A、B、C成等差數(shù)列,其對邊a、b、c滿足,求A。

【解析】本試題主要考查了解三角形的運(yùn)用,

因?yàn)?/p>

【點(diǎn)評】該試題從整體來看保持了往年的解題風(fēng)格,依然是通過邊角的轉(zhuǎn)換,結(jié)合了三角形的內(nèi)角和定理的知識,以及正弦定理和余弦定理,求解三角形中的角的問題。試題整體上比較穩(wěn)定,思路也比較容易想,先將利用等差數(shù)列得到角B,然后利用余弦定理求解運(yùn)算得到A。

 

查看答案和解析>>

已知拋物線C:與圓有一個(gè)公共點(diǎn)A,且在A處兩曲線的切線與同一直線l

(I)     求r;

(II)   設(shè)m、n是異于l且與C及M都相切的兩條直線,m、n的交點(diǎn)為D,求D到l的距離。

【解析】本試題考查了拋物線與圓的方程,以及兩個(gè)曲線的公共點(diǎn)處的切線的運(yùn)用,并在此基礎(chǔ)上求解點(diǎn)到直線的距離。

【點(diǎn)評】該試題出題的角度不同于平常,因?yàn)樯婕暗氖莾蓚(gè)二次曲線的交點(diǎn)問題,并且要研究兩曲線在公共點(diǎn)出的切線,把解析幾何和導(dǎo)數(shù)的工具性結(jié)合起來,是該試題的創(chuàng)新處。另外對于在第二問中更是難度加大了,出現(xiàn)了另外的兩條公共的切線,這樣的問題對于我們以后的學(xué)習(xí)也是一個(gè)需要練習(xí)的方向。

 

 

查看答案和解析>>

設(shè)點(diǎn)是拋物線的焦點(diǎn),是拋物線上的個(gè)不同的點(diǎn)().

(1) 當(dāng)時(shí),試寫出拋物線上的三個(gè)定點(diǎn)、的坐標(biāo),從而使得

(2)當(dāng)時(shí),若,

求證:

(3) 當(dāng)時(shí),某同學(xué)對(2)的逆命題,即:

“若,則.”

開展了研究并發(fā)現(xiàn)其為假命題.

請你就此從以下三個(gè)研究方向中任選一個(gè)開展研究:

① 試構(gòu)造一個(gè)說明該逆命題確實(shí)是假命題的反例(本研究方向最高得4分);

② 對任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

③ 如果補(bǔ)充一個(gè)條件后能使該逆命題為真,請寫出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

【評分說明】本小題若填空不止一個(gè)研究方向,則以實(shí)得分最高的一個(gè)研究方向的得分作為本小題的最終得分.

【解析】第一問利用拋物線的焦點(diǎn)為,設(shè)

分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.

由拋物線定義得到

第二問設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.

由拋物線定義得

第三問中①取時(shí),拋物線的焦點(diǎn)為

設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

,不妨取;;

解:(1)拋物線的焦點(diǎn)為,設(shè),

分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.由拋物線定義得

 

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image010.png">,所以,

故可取滿足條件.

(2)設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.

由拋物線定義得

   又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image017.png">

所以.

(3) ①取時(shí),拋物線的焦點(diǎn)為,

設(shè)分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;,

,

.

,,,是一個(gè)當(dāng)時(shí),該逆命題的一個(gè)反例.(反例不唯一)

② 設(shè),分別過

拋物線的準(zhǔn)線的垂線,垂足分別為,

及拋物線的定義得

,即.

因?yàn)樯鲜霰磉_(dá)式與點(diǎn)的縱坐標(biāo)無關(guān),所以只要將這點(diǎn)都取在軸的上方,則它們的縱坐標(biāo)都大于零,則

,

,所以.

(說明:本質(zhì)上只需構(gòu)造滿足條件且的一組個(gè)不同的點(diǎn),均為反例.)

③ 補(bǔ)充條件1:“點(diǎn)的縱坐標(biāo))滿足 ”,即:

“當(dāng)時(shí),若,且點(diǎn)的縱坐標(biāo))滿足,則”.此命題為真.事實(shí)上,設(shè),

分別過作拋物線準(zhǔn)線的垂線,垂足分別為,由

及拋物線的定義得,即,則

,

又由,所以,故命題為真.

補(bǔ)充條件2:“點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對稱”,即:

“當(dāng)時(shí),若,且點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對稱,則”.此命題為真.(證略)

 

查看答案和解析>>

如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA底面ABCD,AC=,PA=2,E是PC上的一點(diǎn),PE=2EC。

(I)     證明PC平面BED;

(II)   設(shè)二面角A-PB-C為90°,求PD與平面PBC所成角的大小

【解析】本試題主要是考查了四棱錐中關(guān)于線面垂直的證明以及線面角的求解的運(yùn)用。

從題中的線面垂直以及邊長和特殊的菱形入手得到相應(yīng)的垂直關(guān)系和長度,并加以證明和求解。

解法一:因?yàn)榈酌鍭BCD為菱形,所以BDAC,又

【點(diǎn)評】試題從命題的角度來看,整體上題目與我們平時(shí)練習(xí)的試題和相似,底面也是特殊的菱形,一個(gè)側(cè)面垂直于底面的四棱錐問題,那么創(chuàng)新的地方就是點(diǎn)E的位置的選擇是一般的三等分點(diǎn),這樣的解決對于學(xué)生來說就是比較有點(diǎn)難度的,因此最好使用空間直角坐標(biāo)系解決該問題為好。

 

查看答案和解析>>

(本小題滿分12分)

有編號為,,…的10個(gè)零件,測量其直徑(單位:cm),得到下面數(shù)據(jù):


其中直徑在區(qū)間[1.48,1.52]內(nèi)的零件為一等品。

(Ⅰ)從上述10個(gè)零件中,隨機(jī)抽取一個(gè),求這個(gè)零件為一等品的概率;

(Ⅱ)從一等品零件中,隨機(jī)抽取2個(gè).

     (。┯昧慵木幪柫谐鏊锌赡艿某槿〗Y(jié)果;

     (ⅱ)求這2個(gè)零件直徑相等的概率。本小題主要考查用列舉法計(jì)算隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎(chǔ)知識,考查數(shù)據(jù)處理能力及運(yùn)用概率知識解決簡單的實(shí)際問題的能力。滿分12分

【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個(gè).設(shè)“從10個(gè)零件中,隨機(jī)抽取一個(gè)為一等品”為事件A,則P(A)==.

      (Ⅱ)(i)解:一等品零件的編號為.從這6個(gè)一等品零件中隨機(jī)抽取2個(gè),所有可能的結(jié)果有:,,,

,,,共有15種.

      (ii)解:“從一等品零件中,隨機(jī)抽取的2個(gè)零件直徑相等”(記為事件B)的所有可能結(jié)果有:,,共有6種.

      所以P(B)=.

(本小題滿分12分)

如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求異面直線CE與AF所成角的余弦值;      

(Ⅱ)證明CD⊥平面ABF;

查看答案和解析>>


同步練習(xí)冊答案