已知函數(shù) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=4sin(2x-
π
3
)+1
,給定條件p:
π
4
≤x≤
π
2
,條件q:-2<f(x)-m<2,若p是q的充分條件,則實數(shù)m的取值范圍為
 

查看答案和解析>>

已知函數(shù)f(x)是定義在實數(shù)集R上的不恒為零的偶函數(shù),且對任意實數(shù)x都有xf(x+1)=(1+x)f(x),則f(f(
52
))的值是
 

查看答案和解析>>

已知函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求實數(shù)k的范圍;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三個不同的實數(shù)解,求實數(shù)k的范圍.

查看答案和解析>>

8、已知函數(shù)y=f(x)(x∈R)滿足f(x+1)=f(x-1),且x∈[-1,1]時,f(x)=x2,則函數(shù)y=f(x)與y=log5x的圖象的交點個數(shù)為( 。

查看答案和解析>>

已知函數(shù)f(x)=
3-x,x>0
x2-1.x≤0
,則f[f(-2)]=
 

查看答案和解析>>

 

一、選擇題

1.C  2.A  3.D  4.C  5.B  6.C  7.D  8.B  9.A  10.C  11.B  12.B

  • <input id="8g5p5"></input>

    1,3,5

    13.   14.=0   15.-   16.3

    三、解答題

    17.解:(1)∵  ……2分

       …………4分

    ……6分

    (2)由 ……8分

    ,故tanB=2  …………10分

    18.解:(1)設(shè)取出的球不放回袋中,第3次取球才得到紅球的概率為P1,

       ………………6分

    (2)設(shè)取出的球放回袋中,第3次取球才得到紅球的概率P2,

       ………………12分

    19.(1)證明:∵底面ABCD是菱形,且∠ABC=60°

    ∴AB=AD=AC=a,在△PAB中,由PA2+AB2=2a=PB2得PA⊥AB,

    同理得PA⊥AD, ∴PA⊥平面ABCD

    (2)作EG//PA交AD于G,由PA⊥平面ABCD知EG⊥平面ABCD,

    作GH//AC于H,連結(jié)EH,則EH⊥AC,∴∠EHG為二面角的平面角 ……8分

    ∵PE:ED=2:1, ∴EG=,……10分

        …………12分

    20.(本小題12分)

    解:(Ⅰ)∵

    的公比為的等比數(shù)列 …………3分

    又n=1時, ……6分

    (Ⅱ)∵   …………8分

       ……   ……10分

    以上各式相加得:]

      …………12分

    21.(本小題12分)

    解:(Ⅰ)由題意,設(shè)雙曲線方程為  ……2分

    ,∴方程為 …4分

    (Ⅱ)由消去y得 ……7分

    當(dāng)k=2時得

         

      ……10分

    當(dāng)k=-2時同理得

    綜上:∠MFN為直角.   …………12分

    22.解:(1)   …………2分

    上為單調(diào)函數(shù),而不可能恒成立

    所以上恒成立,

       …………6分

    (2)依題意,方程有兩個不同的實數(shù)根,

       ……9分

                

    所以

    所以 

    綜上:  ………………12分

     

     


    同步練習(xí)冊答案