由①和②推得平面PBC 查看更多

 

題目列表(包括答案和解析)

如圖,在三棱錐中,平面平面,,,中點(diǎn).(Ⅰ)求點(diǎn)B到平面的距離;(Ⅱ)求二面角的余弦值.

【解析】第一問(wèn)中利用因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,中點(diǎn),所以

而平面平面,所以平面,再由題設(shè)條件知道可以分別以、、,軸建立直角坐標(biāo)系得,,,,,

故平面的法向量,故點(diǎn)B到平面的距離

第二問(wèn)中,由已知得平面的法向量,平面的法向量

故二面角的余弦值等于

解:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,中點(diǎn),所以

而平面平面,所以平面,

  再由題設(shè)條件知道可以分別以、、, 軸建立直角坐標(biāo)系,得,,,

,,故平面的法向量

,故點(diǎn)B到平面的距離

(Ⅱ)由已知得平面的法向量,平面的法向量

故二面角的余弦值等于

 

查看答案和解析>>

14、給出下面幾個(gè)推理:
①由“6=3+3,8=3+5,10=3+7,12=5+7…”得到結(jié)論:任何一個(gè)不小于6的偶數(shù)都等于兩個(gè)奇質(zhì)數(shù)之和;
②由“三角形內(nèi)角和為180°”得到結(jié)論:直角三角形內(nèi)角和為180°;
③由“正方形面積為邊長(zhǎng)的平方”得到結(jié)論:正方體的體積為邊長(zhǎng)的立方;
④由“a2+b2≥2ab(a,b∈R)”推得sin2x≤1.
其中是演繹推理的序號(hào)是
②④

查看答案和解析>>

在直角坐標(biāo)系xOy中,點(diǎn)P(xP,yP)和點(diǎn)Q(xQ,yQ)滿足
xQ=yp+xp
y Q=yp-xp
按此規(guī)則由點(diǎn)P得到點(diǎn)Q,稱為直角坐標(biāo)平面的一個(gè)“點(diǎn)變換”.此變換下,若
OQ
OP
=m,∠POQ=θ,其中O為坐標(biāo)原點(diǎn),則y=msin(x+θ)的圖象在y軸右邊第一個(gè)最高點(diǎn)的坐標(biāo)為
π
4
,
2
π
4
,
2

查看答案和解析>>

在直角坐標(biāo)系xOy中,點(diǎn)P(xP,yP)和點(diǎn)Q(xQ,yQ)滿足,按此規(guī)則由點(diǎn)P得到點(diǎn)Q,稱為直角坐標(biāo)平面的一個(gè)“點(diǎn)變換”.此變換下,若=m,∠POQ=q,其中O為坐標(biāo)原點(diǎn),則y=msin(x+q)的圖象在y軸右邊第一個(gè)最高點(diǎn)的坐標(biāo)為   ▲   .

 

查看答案和解析>>

如圖,已知圓錐體的側(cè)面積為,底面半徑互相垂直,且,是母線的中點(diǎn).

(1)求圓錐體的體積;

(2)異面直線所成角的大。ńY(jié)果用反三角函數(shù)表示).

【解析】本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。

第一問(wèn)中,由題意,,故

從而體積.2中取OB中點(diǎn)H,聯(lián)結(jié)PH,AH.

由P是SB的中點(diǎn)知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.

由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得;

中,,PH=1/2SB=2,,

,所以異面直線SO與P成角的大arctan

解:(1)由題意,

從而體積.

(2)如圖2,取OB中點(diǎn)H,聯(lián)結(jié)PH,AH.

由P是SB的中點(diǎn)知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.

由SO平面OAB,PH平面OAB,PHAH.

OAH中,由OAOB得;

中,,PH=1/2SB=2,,

,所以異面直線SO與P成角的大arctan

 

查看答案和解析>>


同步練習(xí)冊(cè)答案