已知,且 (1)求與的關系,(2)證明. 查看更多

 

題目列表(包括答案和解析)

已知平面直角坐標系下的一列點Pn(an,bn)滿足an+1=anbn+1,bn+1=
bn
1-
a
2
n
,且P1(
1
4
,
3
4
)(n∈N*)

(Ⅰ) 求點P2坐標,并寫出過點P1,P2的直線L的方程;
(Ⅱ) 猜想點Pn(n≥2)與直線L的位置關系,并加以證明;
(Ⅲ) 若c1=1,cn+1=bncn,Sn=c1a2+c2a3+…+cnan+1,求
lim
n→∞
Sn
的值.

查看答案和解析>>

已知橢圓C1
x2
5
+
y2
2
=1和圓C:x2+y2=4,且圓C與x軸交于A1,A2兩點.
(1)設橢圓C1的右焦點為F,點P的圓C上異于A1,A2的動點,過原點O作直線PF的垂線交橢圓的右準線交于點Q,試判斷直線PQ與圓C的位置關系,并給出證明;
(2)設點M(x0,y0)在直線x+y-3=0上,若存在點N∈C,使得∠OMN=60°(O為坐標原點),求x0的取值范圍.

查看答案和解析>>

已知點P是直角坐標平面內的動點,點P到直線l1:x=-2的距離為d1,到點F(-1,0)的距離為d2,且
d2
d1
=
2
2

(1)求動點P所在曲線C的方程;
(2)直線l過點F且與曲線C交于不同兩點A、B(點A或B不在x軸上),分別過A、B點作直線l1:x=-2的垂線,對應的垂足分別為M、N,試判斷點F與以線段MN為直徑的圓的位置關系(指在圓內、圓上、圓外等情況);
(3)記S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的點),問是否存在實數λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,請說明理由.
進一步思考問題:若上述問題中直線l1:x=-
a2
c
、點F(-c,0)、曲線C:
x2
a2
+
y2
b2
=1(a>b>0,c=
a2-b2
)
,則使等式S22=λS1S3成立的λ的值仍保持不變.請給出你的判斷
 
 (填寫“不正確”或“正確”)(限于時間,這里不需要舉反例,或證明).

查看答案和解析>>

已知A(-2,0),B(2,0)為橢圓C的左、右頂點,F為其右焦點,P是橢圓C上異于A,B的動點,且△APB面積的最大值為2
3

(Ⅰ)求橢圓C的方程及離心率;
(Ⅱ)直線AP與橢圓在點B處的切線交于點D,當直線AP繞點A轉動時,試判斷以BD為直徑的圓與直線PF的位置關系,并加以證明.

查看答案和解析>>

已知圓C方程為x2+y2-8mx-(6m+2)y+6m+1=0(m∈R,m≠0),橢圓中心在原點,焦點在x軸上.
(1)證明圓C恒過一定點M,并求此定點M的坐標;
(2)判斷直線4x+3y-3=0與圓C的位置關系,并證明你的結論;
(3)當m=2時,圓C與橢圓的左準線相切,且橢圓過(1)中的點M,求此時橢圓方程;在x軸上是否存在兩定點A,B,使得對橢圓上任意一點Q(異于長軸端點),直線QA,QB的斜率之積為定值?若存在,求出A,B坐標;若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案