∴.即定點(diǎn)E的坐標(biāo)為----------12分 查看更多

 

題目列表(包括答案和解析)

已知點(diǎn)E、F的坐標(biāo)分別是(-2,0)、(2,0),直線EP、FP相交于點(diǎn)P,且它們的斜率之積為-
1
4

(1)求證:點(diǎn)P的軌跡在一個(gè)橢圓C上,并寫(xiě)出橢圓C的方程;
(2)設(shè)過(guò)原點(diǎn)O的直線AB交(1)中的橢圓C于點(diǎn)A、B,定點(diǎn)M的坐標(biāo)為(1,
1
2
)
,試求△MAB面積的最大值,并求此時(shí)直線AB的斜率kAB;
(3)反思(2)題的解答,當(dāng)△MAB的面積取得最大值時(shí),探索(2)題的結(jié)論中直線AB的斜率kAB和OM所在直線的斜率kOM之間的關(guān)系.由此推廣到點(diǎn)M位置的一般情況或橢圓的一般情況(使第(2)題的結(jié)論成為推廣后的一個(gè)特例),試提出一個(gè)猜想或設(shè)計(jì)一個(gè)問(wèn)題,嘗試研究解決.
[說(shuō)明:本小題將根據(jù)你所提出的猜想或問(wèn)題的質(zhì)量分層評(píng)分].

查看答案和解析>>

設(shè)m∈R,在平面直角坐標(biāo)系中,已知向量
a
=(mx,y+1),向量
b
=(x,y-1),
a
b
,動(dòng)點(diǎn)M(x,y)的軌跡為E.
(1)求軌跡E的方程,并說(shuō)明該方程所表示曲線的形狀;
(2)點(diǎn)P為當(dāng)m=
1
4
時(shí)軌跡E上的任意一點(diǎn),定點(diǎn)Q的坐標(biāo)為(3,0),點(diǎn)N滿足
PN
=2
NQ
,試求點(diǎn)N的軌跡方程.

查看答案和解析>>

(2012•浙江模擬)在直角坐標(biāo)平面中,△ABC的兩個(gè)頂點(diǎn)為A(0,-1),B(0,1)平面內(nèi)兩點(diǎn)G、M同時(shí)滿足①
GA
+
GB
+
GC
=
0
,②|
MA
|
=|
MB
|
=|
MC
|
,③
GM
AB

(1)求頂點(diǎn)C的軌跡E的方程
(2)設(shè)P、Q、R、N都在曲線E上,定點(diǎn)F的坐標(biāo)為(
2
,0),已知
PF
FQ
RF
FN
PF
RF
=0.求四邊形PRQN面積S的最大值和最小值.

查看答案和解析>>

精英家教網(wǎng)如圖,已知直線l與拋物線x2=4y相切于點(diǎn)P(2,1),且與x軸交于點(diǎn)A,定點(diǎn)B的坐標(biāo)為(2,0).
(I)若動(dòng)點(diǎn)M滿足
AB
BM
+
2
|
AM
|=0
,求點(diǎn)M的軌跡C;
(Ⅱ)若過(guò)點(diǎn)B的直線l′(斜率不等于零)與(I)中的軌跡C交于不同的兩點(diǎn)E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

查看答案和解析>>

(2012•江西模擬)已知橢圓的兩個(gè)焦點(diǎn)F1(-
3
,0)
F2(
3
,0)
,過(guò)F1且與坐標(biāo)軸不平行的直線l1與橢圓相交于M,N兩點(diǎn),△MNF2的周長(zhǎng)等于8.若過(guò)點(diǎn)(1,0)的直線l與橢圓交于不同兩點(diǎn)P、Q,x軸上存在定點(diǎn)E(m,0),使
PE
QE
恒為定值,則E的坐標(biāo)為( 。

查看答案和解析>>


同步練習(xí)冊(cè)答案