已知橢圓 的短軸端點分別為.左.右焦點分別為F1.F2.長軸右端點為A.若.則橢圓的離心率為( ) 查看更多

 

題目列表(包括答案和解析)

已知橢圓的左、右焦點分別為,且,長軸的一個端點與短軸兩個端點組成等邊三角形的三個頂點.

(1)求橢圓方程;

(2)設(shè)橢圓與直線相交于不同的兩點MN,又點,當(dāng)時,求實數(shù)m的取值范圍,

 

查看答案和解析>>

已知橢圓的左右焦點分別為,短軸兩個端點為、,且四邊形是邊長為2的正方形.
(1)求橢圓方程;
(2)若分別是橢圓長軸的左右端點,動點滿足,連接,交橢圓于點,證明:為定值;
(3)在(2)的條件下,試問軸上是否存在異于點的定點,使得以為直徑的圓恒過直線的交點?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

已知橢圓的右焦點為FA為短軸的一個端點,且,的面積為1(其中為坐標(biāo)原點).
(1)求橢圓的方程;
(2)若C、D分別是橢圓長軸的左、右端點,動點M滿足,連結(jié)CM,交橢圓于點,證明:為定值;
(3)在(2)的條件下,試問軸上是否存在異于點C的定點Q,使得以MP為直徑的圓恒過直線DPMQ的交點,若存在,求出點Q的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

已知橢圓的左、右焦點分別為,且,長軸的一個端點與短軸兩個端點組成等邊三角形的三個頂點.
(1)求橢圓方程;
(2)設(shè)橢圓與直線相交于不同的兩點M、N,又點,當(dāng)時,求實數(shù)m的取值范圍,

查看答案和解析>>

已知橢圓的右焦點為F,A為短軸的一個端點,且,的面積為1(其中為坐標(biāo)原點).
(1)求橢圓的方程;
(2)若C、D分別是橢圓長軸的左、右端點,動點M滿足,連結(jié)CM,交橢圓于點,證明:為定值;
(3)在(2)的條件下,試問軸上是否存在異于點C的定點Q,使得以MP為直徑的圓恒過直線DP、MQ的交點,若存在,求出點Q的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

D

A

A

B

B

D

C

B

B

C

13.    9     14.         15.               16.           

17.解:(1)

        (4分)

的最小正周期為                                              (5分)

的最小值為-2                                              (6分)

(2)的遞增區(qū)間為                                (10分)

18.(1)證明:過D作DHAE于H,

平面ADE平面ABCE

DH平面ABCE    DHBE

中,由題設(shè)條件可得:AB=2,AE=BE=    AEBE

BE平面ADE                                                 (6分)

(2)由(1)知,BE平面ADE,為BD和平面ADE所成的角,且BEDE

在矩形ABCD中,AB=2,AD=1,E為CD的中點

DE=1,BE=

中,

故BD和平面ADE所成角的正切值為                         (12分)

19.(1)記“3粒種子,至少有1粒未發(fā)芽”為事件,

由題意,種3粒種子,相當(dāng)于作3次獨(dú)立重復(fù)試驗,

                                  (4分)

(2)記“3粒A種子,至少有2粒未發(fā)芽”為事件,“3粒B種子,全部發(fā)芽”為事件,則     (6分)

由于相互獨(dú)立,故     (8分)

(3)                   (12分)

20.解:(1)的圖像關(guān)于原點對稱,為奇函數(shù)

                                          (4分)

(2)假設(shè)存在兩點滿足題設(shè)條件

    

而兩切線垂直,則應(yīng)有,矛盾,

故不存在滿足題設(shè)條件的兩點A,B                                 (8分)

(3)時,,為減函數(shù)

                               (12分)

21.解:(1)

兩式相減得:

時,

是首項為,公比為的等比數(shù)列

                                          (4分)

(2)

為以-1為公差的等差數(shù)列,                    (7分)

(3)

以上各式相加得:

當(dāng)時,

當(dāng)時,上式也成立,                          (12分)

22.(1)依拋物線定義知,點P的軌跡C,為N,F(xiàn)為焦點,直線為準(zhǔn)線的拋物線

曲線C的方程為.                                           (4分)

(2)①設(shè)M、N的方程為帶入并整理得

      

設(shè)MN的中點為

MN的垂直平分線方程為

點B的坐標(biāo)為

的范圍是                         (8分)

②易得弦長

為直角三角形,則為等腰直角三角形,

點B的坐標(biāo)為(0,10)

 

 

 


同步練習(xí)冊答案