3.已知命題p:為銳角△ABC的兩內角;命題q: ,則p是q的A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分又不必要條件 查看更多

 

題目列表(包括答案和解析)

給出以下5個命題:
①曲線x2-(y-1)2=1按
a
=(1,-2)
平移可得曲線(x+1)2-(y-3)2=1;
②設A、B為兩個定點,n為常數(shù),|
PA
|-|
PB
|=n
,則動點P的軌跡為雙曲線;
③若橢圓的左、右焦點分別為F1、F2,P是該橢圓上的任意一點,延長F1P到點M,使|F2P|=|PM|,則點M的軌跡是圓;
④A、B是平面內兩定點,平面內一動點P滿足向量
AB
AP
夾角為銳角θ,且滿足 |
PB
| |
AB
| +
PA
AB
=0
,則點P的軌跡是圓(除去與直線AB的交點);
⑤已知正四面體A-BCD,動點P在△ABC內,且點P到平面BCD的距離與點P到點A的距離相等,則動點P的軌跡為橢圓的一部分.
其中所有真命題的序號為
 

查看答案和解析>>

給出以下5個命題:
①曲線x2-(y-1)2=1按平移可得曲線(x+1)2-(y-3)2=1;
②設A、B為兩個定點,n為常數(shù),,則動點P的軌跡為雙曲線;
③若橢圓的左、右焦點分別為F1、F2,P是該橢圓上的任意一點,延長F1P到點M,使|F2P|=|PM|,則點M的軌跡是圓;
④A、B是平面內兩定點,平面內一動點P滿足向量夾角為銳角θ,且滿足 ,則點P的軌跡是圓(除去與直線AB的交點);
⑤已知正四面體A-BCD,動點P在△ABC內,且點P到平面BCD的距離與點P到點A的距離相等,則動點P的軌跡為橢圓的一部分.
其中所有真命題的序號為   

查看答案和解析>>

給出下列命題:

(1)α、β是銳角△ABC的兩個內角,則sinα<sinβ;

(2)在銳角△ABC中,BC=1,B=2A,則AC的取值范圍為();

(3)已知為互相垂直的單位向量,-2,+λ的夾角為銳角,則實數(shù)λ的取值范圍是;

(4)已知O是△ABC所在平面內定點,若P是△ABC的內心,則有+λ(),λ∈R;

(5)直線x=-是函數(shù)y=sin(2x-)圖象的一條對稱軸.

其中正確命題是

[  ]

A.(1)(3)(5)

B.(2)(4)(5)

C.(2)(3)(4)

D.(1)(4)(5)

查看答案和解析>>

選擇題(60分)

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

D.

A

C

A

B

B

A

C

A

C

B

填空題(16分)

13    14    15    16  8

17解:(1)由已知得,      ………………6分

(2)………10分

     =- ………12分

18解:(Ⅰ)(法一)f(x)的定義域為R。

      

所以f(x)在上單調遞增,在上單調遞減!4分 

所以f(x)值域為……6分

(法二)……4分

所以f(x)的值域是………6分

(法三)由絕對值的幾何意義知f(x)=表示數(shù)軸上點P(x)到點M(2)與點N(-2)距離之和.……4分

所以f(x)的值域是.……6分

(Ⅱ)原不等式等價于:

      ①或②或③……11分

所以原不等式解集為……12分

www.ks5u.com19 解:設,由題意知,  ……6分

所以雙曲線方程為  ……10分

所以雙曲線的漸近線方程為 ……12分

20解:(Ⅰ)由題意知方程的兩根是

      ……4分

(Ⅱ)

在[-1,2]上恒成立,………6分

……8分

當x在[-1,2]上變化時,的變化情況如下:

x

-1

1

(1,2)

2

 

+

 

-

 

+

 

g(x)

極大值

極小值

2

所以當x=2時,,

所以c的取值范圍為……12分

21解:(1)當n=1時,,當時,由所以…………4分

所以數(shù)列是首項為3,公差為1的等差數(shù)列,

所以數(shù)列的通項公式為…………6分

       (2)

 

 

www.ks5u.com22解 :(Ⅰ)由題設a=2,c=1從而所以橢圓的方程為: ………5分

(Ⅱ)由題意得F(1,0),N(4,0),設A(m,n)

則B(m,-n)(

設動點M(x,y).AF與BN的方程分別為:n(x-1)-(m-1)y=0  ②   n(x-4)+(m-4)y=0 ③

由②③得:當時, 代入①得

時,由②③得:,解得n=0,y=0與矛盾,所以的軌跡方程為!9分

(Ⅲ)△AMN的面積為△AFN與△MFN面積之和,且有相同的底邊FN,當兩高之和最大時,面積最大,這時AM應為特殊位置,所以猜想:當AM與x軸垂直時,△AMN的面積最大,|AM|=3,|FN|=3,這時,△AMN的面積最大最大值為………11分。

證明如下:設AM的方程為x=ty+1,代入

設A,則有

 

,則

 

因為,所以,即有最大值3,△AMN的面積有最大值!13分

 

 


同步練習冊答案