18.設(shè)函數(shù)f(x)=|x-2|+|x+2|.的值域, 查看更多

 

題目列表(包括答案和解析)

(02年全國卷文)(本小題滿分12分,附加題滿分4分)

(I)給出兩塊相同的正三角形紙片(如圖1,圖2),要求用其中一塊剪拼成一個(gè)三棱錐模型,另一塊剪拼成一個(gè)正三棱柱模型,使它們的全面積都與原三角形的面積相等,請?jiān)O(shè)計(jì)一種剪拼方法,分別用虛線標(biāo)示在圖1、圖2中,并作簡要說明;

(II)試比較你剪拼的正三棱錐與正三棱柱的體積的大;

(III)(本小題為附加題,如果解答正確,加4分,但全卷總分不超過150分)

如果給出的是一塊任意三角形的紙片(如圖3),要求剪成一個(gè)直三棱柱,使它的全面積與給出的三角形的面積相等。請?jiān)O(shè)計(jì)一種剪拼方法,用虛線標(biāo)示在圖3中,并作簡要說明。

 


查看答案和解析>>

(本題滿分12分)第一題滿分5分,第二題滿分7分.

已知復(fù)數(shù),=2,是虛部為正數(shù)的純虛數(shù)。

(1)求的模;(2)求復(fù)數(shù)。

 

 

查看答案和解析>>

(本小題滿分12分)(原創(chuàng)題)

在平面直角坐標(biāo)系中,已知,若實(shí)數(shù)使向量。

(1)求點(diǎn)的軌跡方程,并判斷點(diǎn)的軌跡是怎樣的曲線;

(2)當(dāng)時(shí),過點(diǎn)且斜率為的直線與此時(shí)(1)中的曲線相交的另一點(diǎn)為,能否在直線上找一點(diǎn),使為正三角形(請說明理由)。

查看答案和解析>>

(本小題滿分12分)

    如題21圖,已知離心率為的橢圓過點(diǎn)M(2,1),O為坐標(biāo)原點(diǎn),平行于OM的直線交橢圓C于不同的兩點(diǎn)A、B。

    (1)求橢圓C的方程。

    (2)證明:直線MA、MB與x軸圍成一個(gè)等腰三角形。

 

 

 

 

 

 

 

查看答案和解析>>

(本題滿分12分)第一題滿分5分,第二題滿分7分.
已知復(fù)數(shù)=2,是虛部為正數(shù)的純虛數(shù)。
(1)求的模;(2)求復(fù)數(shù)

查看答案和解析>>

選擇題(60分)

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

D.

A

C

A

B

B

A

C

A

C

B

填空題(16分)

13    14    15    16  8

17解:(1)由已知得,      ………………6分

(2)………10分

     =- ………12分

18解:(Ⅰ)(法一)f(x)的定義域?yàn)镽。

       ,

所以f(x)在上單調(diào)遞增,在上單調(diào)遞減!4分 

所以f(x)值域?yàn)?sub>……6分

(法二)……4分

所以f(x)的值域是………6分

(法三)由絕對值的幾何意義知f(x)=表示數(shù)軸上點(diǎn)P(x)到點(diǎn)M(2)與點(diǎn)N(-2)距離之和.……4分

所以f(x)的值域是.……6分

(Ⅱ)原不等式等價(jià)于:

      ①或②或③……11分

所以原不等式解集為……12分

www.ks5u.com19 解:設(shè),由題意知,  ……6分

所以雙曲線方程為  ……10分

所以雙曲線的漸近線方程為 ……12分

20解:(Ⅰ)由題意知方程的兩根是

      ……4分

(Ⅱ)

在[-1,2]上恒成立,………6分

……8分

當(dāng)x在[-1,2]上變化時(shí),的變化情況如下:

x

-1

1

(1,2)

2

 

+

 

-

 

+

 

g(x)

極大值

極小值

2

所以當(dāng)x=2時(shí),,

所以c的取值范圍為……12分

21解:(1)當(dāng)n=1時(shí),,當(dāng)時(shí),由所以…………4分

所以數(shù)列是首項(xiàng)為3,公差為1的等差數(shù)列,

所以數(shù)列的通項(xiàng)公式為…………6分

       (2)

 

 

www.ks5u.com22解 :(Ⅰ)由題設(shè)a=2,c=1從而所以橢圓的方程為: ………5分

(Ⅱ)由題意得F(1,0),N(4,0),設(shè)A(m,n)

則B(m,-n)(

設(shè)動點(diǎn)M(x,y).AF與BN的方程分別為:n(x-1)-(m-1)y=0  ②   n(x-4)+(m-4)y=0 ③

由②③得:當(dāng)時(shí), 代入①得

當(dāng)時(shí),由②③得:,解得n=0,y=0與矛盾,所以的軌跡方程為!9分

(Ⅲ)△AMN的面積為△AFN與△MFN面積之和,且有相同的底邊FN,當(dāng)兩高之和最大時(shí),面積最大,這時(shí)AM應(yīng)為特殊位置,所以猜想:當(dāng)AM與x軸垂直時(shí),△AMN的面積最大,|AM|=3,|FN|=3,這時(shí),△AMN的面積最大最大值為………11分。

證明如下:設(shè)AM的方程為x=ty+1,代入

設(shè)A,則有

 

,則

 

因?yàn)?sub>,所以,即時(shí)有最大值3,△AMN的面積有最大值!13分

 

 


同步練習(xí)冊答案