22.如圖.設(shè)拋物線的焦點(diǎn)為F.動(dòng)點(diǎn)P在直線上運(yùn)動(dòng).過P作拋物線C的兩條切線PA.PB.且與拋物線C分別相切于A.B兩點(diǎn).(1)求△APB的重心G的軌跡方程. 2005年普通高等學(xué)校招生全國(guó)統(tǒng)一考試 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

如圖,設(shè)拋物線的準(zhǔn)線與軸交于,焦點(diǎn)為;以為焦點(diǎn),離心率的橢圓與拋物線軸上方的交點(diǎn)為,延長(zhǎng)交拋物線于點(diǎn),是拋物線上一動(dòng)點(diǎn),且M在之間運(yùn)動(dòng).

(1)當(dāng)時(shí),求橢圓的方程,

(2)當(dāng)的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù)時(shí),

面積的最大值.

 

 

查看答案和解析>>

(本小題滿分14分)

如圖,設(shè)拋物線的準(zhǔn)線與軸交于,焦點(diǎn)為;以為焦點(diǎn),離心率的橢圓與拋物線軸上方的交點(diǎn)為,延長(zhǎng)交拋物線于點(diǎn),是拋物線上一動(dòng)點(diǎn),且M在之間運(yùn)動(dòng).

(1)當(dāng)時(shí),求橢圓的方程,

(2)當(dāng)的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù)時(shí),

面積的最大值.

 

查看答案和解析>>

(本小題滿分14分)

如圖,設(shè)拋物線的準(zhǔn)線與軸交于,焦點(diǎn)為;以為焦點(diǎn),離心率的橢圓與拋物線軸上方的交點(diǎn)為,延長(zhǎng)交拋物線于點(diǎn),是拋物線上一動(dòng)點(diǎn),且M在之間運(yùn)動(dòng).

(1)當(dāng)時(shí),求橢圓的方程,

(2)當(dāng)的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù)時(shí),

面積的最大值.

 

 

查看答案和解析>>

(本小題滿分14分)
如圖,設(shè)拋物線的準(zhǔn)線與軸交于,焦點(diǎn)為;以為焦點(diǎn),離心率的橢圓與拋物線軸上方的交點(diǎn)為,延長(zhǎng)交拋物線于點(diǎn),是拋物線上一動(dòng)點(diǎn),且M在之間運(yùn)動(dòng).
(1)當(dāng)時(shí),求橢圓的方程,
(2)當(dāng)的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù)時(shí),
面積的最大值.

查看答案和解析>>

(本小題滿分14分)如圖所示,橢圓的離心率為,且A(0,1)是橢圓C的頂點(diǎn)。       

(1)求橢圓C的方程;

(2)過點(diǎn)A作斜率為1的直線,設(shè)以橢圓C的右焦點(diǎn)F為拋物線的焦點(diǎn),若點(diǎn)M為拋物線E上任意一點(diǎn),求點(diǎn)M到直線距離的最小值。

 

 

 

 

查看答案和解析>>

一、選擇題

1.D  2.A  3.A  4.B  5.B  6.C  7.C  8.C  9.C  10.B  11.D  12.A

二、填空題

13.         14.      15.       16.③④

三、解答題

17.解:(1)將得

(2)不等式即為

①當(dāng)

②當(dāng)

③.

18.解:

       

19.解:(1)設(shè)正面出現(xiàn)的次數(shù)為m,反面出現(xiàn)的次數(shù)為n,則,可得:

(2)

20.解法(一)

(1)證明:∵AE⊥平面AA1DD1,A1D⊥AD1,∴A1D⊥D1E

(2)設(shè)點(diǎn)E到面ACD1的距離為h,在△ACD1中,AC=CD1=,AD1=,

(3)過D作DH⊥CE于H,連D1H、DE,則D1H⊥CE,

  ∴∠DHD1為二面角D1―EC―D的平面角.

設(shè)AE=x,則BE=2-x

解法(二):以D為坐標(biāo)原點(diǎn),直線DA,DC,DD1分別為x,y,z軸,建立空間直角坐標(biāo)系,設(shè)AE=x,則A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)

(1)

(2)因?yàn)镋為AB的中點(diǎn),則E(1,1,0),從而,

,設(shè)平面ACD1的法向量為,則

也即,得,從而,所以點(diǎn)E到平面AD1C的距離為

(3)設(shè)平面D1EC的法向量,∴

由  令b=1, ∴c=2,a=2-x,

依題意

∴(不合,舍去), .

∴AE=時(shí),二面角D1―EC―D的大小為.

21.解:(1)方法一 用數(shù)學(xué)歸納法證明:

1°當(dāng)n=1時(shí),

   ∴,命題正確.

2°假設(shè)n=k時(shí)有

   則

  

∴時(shí)命題正確.

由1°、2°知,對(duì)一切n∈N時(shí)有

方法二:用數(shù)學(xué)歸納法證明:

       1°當(dāng)n=1時(shí),∴;

    2°假設(shè)n=k時(shí)有成立,

       令,在[0,2]上單調(diào)遞增,所以由假設(shè)

有:即

也即當(dāng)n=k+1時(shí)  成立,所以對(duì)一切

   (2)下面來求數(shù)列的通項(xiàng):所以

,

又bn=-1,所以

22.解:(1)設(shè)切點(diǎn)A、B坐標(biāo)分別為,

∴切線AP的方程為:

  切線BP的方程為:

解得P點(diǎn)的坐標(biāo)為:

所以△APB的重心G的坐標(biāo)為 ,

所以,由點(diǎn)P在直線l上運(yùn)動(dòng),從而得到重心G的軌跡方程為:

   (2)方法1:因?yàn)?/p>

由于P點(diǎn)在拋物線外,則

同理有

∴∠AFP=∠PFB.

方法2:①當(dāng)所以P點(diǎn)坐標(biāo)為,則P點(diǎn)到直線AF的距離為:

所以P點(diǎn)到直線BF的距離為:

所以d1=d2,即得∠AFP=∠PFB.

②當(dāng)時(shí),直線AF的方程:

直線BF的方程:

所以P點(diǎn)到直線AF的距離為:

,同理可得到P點(diǎn)到直線BF的距離,因此由d1=d2,可得到∠AFP=∠PFB.

 

 

 

 

 

 


同步練習(xí)冊(cè)答案