則的最大值是 . 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)如下圖,某隧道設(shè)計為雙向四車道,車道總寬20 m,要求通行車輛限高5 m,隧道全長2.5 km,隧道的兩側(cè)是與地面垂直的墻,高度為3米,隧道上部拱線近似地看成半個橢圓.

(1)若最大拱高h為6 m,則隧道設(shè)計的拱寬l是多少?

(2)若要使隧道上方半橢圓部分的土方工程量最小,則應(yīng)如何設(shè)計拱高h和拱寬l

(已知:橢圓+=1的面積公式為S=,柱體體積為底面積乘以高.)

(3)為了使隧道內(nèi)部美觀,要求在拱線上找兩個點M、N,使它們所在位置的高度恰好是限高5m,現(xiàn)以MN以及橢圓的左、右頂點為支點,用合金鋼板把隧道拱線部分連接封閉,形成一個梯形,若l=30m,梯形兩腰所在側(cè)面單位面積的鋼板造價是梯形頂部單位面積鋼板造價的倍,試確定M、N的位置以及的值,使總造價最少.

查看答案和解析>>

(本小題滿分12分)已知函數(shù)處的切線恰好為軸。 (I)求的值;(II)若區(qū)間恒為函數(shù)的一個單調(diào)區(qū)間,求實數(shù)的最小值;(III)記(其中),的導(dǎo)函數(shù),則函數(shù)是否存在極值點?若存在,請找出極值點并論證是極大值點還是極小值點;若不存在,請說明理由。

查看答案和解析>>

(本小題滿分12分)如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花壇AMPN,要求M在AB的延長線上,N在AD的延長線上,且對角線MN過C點。已知AB=3米,AD=2米。

 (I)設(shè)(單位:米),要使花壇AMPN的面積大于32平方米,求的取值范圍;

 (II)若(單位:米),則當(dāng)AM,AN的長度分別是多少時,花壇AMPN的面積最大?并求出最大面積。

查看答案和解析>>

(本小題滿分12分)自然狀態(tài)下的魚類是一種可再生的資源,為了持續(xù)利用這一資源,需從宏觀上考察其再生能力及捕撈強度對魚群總量的影響。用表示某魚群在第年初的總量,,且。不考慮其他因素,設(shè)在第年內(nèi)魚群的繁殖量及被捕撈量都與成正比,死亡量與成正比,這些比例系數(shù)依次為正數(shù)其中稱為捕撈強度。
(1)求的關(guān)系式;
(2)設(shè),為了保證對任,都有,則捕撈強度的最大允許值是多少?證明你的結(jié)論。

查看答案和解析>>

(本小題滿分12分)有這樣一則公益廣告:“人們在享受汽車帶來的便捷與舒適的同時,卻不得不呼吸汽車排放的尾氣”,汽車已是城市中碳排放量比較大的行業(yè)之一.某市為響應(yīng)國家節(jié)能減排,更好地保護(hù)環(huán)境,決定將于年起取消排放量超過型新車掛牌.檢測單位對目前該市保有量最大的甲類型品牌車隨機抽取輛進(jìn)行了排放量檢測,記錄如下(單位:).

(Ⅰ)已知,求的值及樣本標(biāo)準(zhǔn)差;
(Ⅱ)從被檢測的甲類品牌車中任取2輛,則至少有一輛不符合排放量的概率是多少?

查看答案和解析>>

 

一、選擇題

(1)D      (2)C      (3)A      (4)D      (5)A      (6)B

(7)C      (8)A      (9)B      (10)A     (11)B     (12)C

二、填空題:本大題共4小題,每小題4分,共16分.把答案填在題中橫線上.

(13)28    (14)   (15)    (16)2

三、解答題

(17)本小題主要考查同角三角函數(shù)的基本關(guān)系式,二倍角公式以及三角函數(shù)式的恒等變形等基礎(chǔ)知識和基本技能.滿分12分.

解:

                     

   當(dāng)為第二象限角,且

   ,

所以=

(18)本小題主要考查函數(shù)的導(dǎo)數(shù)計算,利用導(dǎo)數(shù)討論函數(shù)的性質(zhì),判斷函數(shù)的最大值、最小值以及綜合運算能力.滿分12分.

   解:

令 

化簡為  解得

當(dāng)單調(diào)增加;

當(dāng)單調(diào)減少.

所以為函數(shù)的極大值.

又因為  

所以   為函數(shù)在[0,2]上的最小值,為函數(shù)

在[0,2]上的最大值.

(19)本小題主要考查離散型隨機變量的分布列、數(shù)學(xué)期望等概念,以及運用概率統(tǒng)計知識解決實際問題的能力.滿分12分.

   解:(Ⅰ)的可能值為-300,-100,100,300.

P(=-300)=0.23=0.008, P(=-100)=3×0.22×0.8=0.096,

P(=100)=3×0.2×0.82=0.384, P(=300)=0.83=0.512,

所以的概率分布為

-300

-100

100

300

P

0.008

0.096

0.384

0.512

根據(jù)的概率分布,可得的期望

E=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.

(Ⅱ)這名同學(xué)總得分不為負(fù)分的概率為P(≥0)=0.384+0.512=0.896.

   解:(Ⅰ)如圖1,取AD的中點E,連結(jié)PE,則PE⊥AD.

作PO⊥平面在ABCD,垂足為O,連結(jié)OE.

根據(jù)三垂線定理的逆定理得OE⊥AD,

所以∠PEO為側(cè)面PAD與底面所成的二面角的平面角,

由已知條件可知∠PEO=60°,PE=6,

所以PO=3,四棱錐P―ABCD的體積

VP―ABCD=

(Ⅱ)解法一:如圖1,以O(shè)為原點建立空間直角坐標(biāo)系.通過計算可得

P(0,0,3),A(2,-3,0),B(2,5,0),D(-2,-3,0)

所以

因為 所以PA⊥BD.

解法二:如圖2,連結(jié)AO,延長AO交BD于點F.通過計算可得EO=3,AE=2,

      所以  Rt△AEO∽Rt△BAD.

              得∠EAO=∠ABD.

              所以∠EAO+∠ADF=90°

         所以  AF⊥BD.

         因為  直線AF為直線PA在平面ABCD 內(nèi)的身影,所以PA⊥BD.

      (21)本小題主要考查點到直線距離公式,雙曲線的基本性質(zhì)以及綜合運算能力.滿分12分.

        解:直線的方程為,即 

      由點到直線的距離公式,且,得到點(1,0)到直線的距離

      ,

      同理得到點(-1,0)到直線的距離

         即   

      于是得 

      解不等式,得   由于所以的取值范圍是

      (22)本小題主要考查函數(shù)的導(dǎo)數(shù),三角函數(shù)的性質(zhì),等差數(shù)列與等比數(shù)列的概念和性質(zhì),以及綜合運用的能力.滿分14分.

      (Ⅰ)證明:

      解出為整數(shù),從而

              

       

             所以數(shù)列是公比的等比數(shù)列,且首項

      (Ⅱ)解:

               

      從而  

          

      因為,所以


      同步練習(xí)冊答案