題目列表(包括答案和解析)
設(shè)m、n是兩條不同的直線,是三個(gè)不同的
平面,給出下列四個(gè)命題:
①若,,則
②若,,,則
③若,,則
④若,,則
其中正確命題的序號是( ) .
(A)①和② (B)②和③ (C)③和④ (D)①和④
設(shè)m、n是兩條不同的直線,是三個(gè)不同的
平面,給出下列四個(gè)命題:
①若,,則
②若,,,則
③若,,則
④若,,則
其中正確命題的序號是( ) .
(A)①和② (B)②和③ (C)③和④ (D)①和④
設(shè)m、n是兩條不同的直線,是三個(gè)不同的
平面,給出下列四個(gè)命題:
①若,,則
②若,,,則
③若,,則
④若,,則
其中正確命題的序號是( ) .
(A)①和② (B)②和③ (C)③和④ (D)①和④
設(shè)m、n是兩條不同的直線,是三個(gè)不同的平面,給出下列四個(gè)命題:
①若,,則 ②若,,,則
③若,,則 ④若,,則
其中正確命題的序號是
設(shè)m、n是兩條不同的直線,是三個(gè)不同的平面,給出下列四個(gè)命題:
①若,,則 ②若,,,則
③若,,則 ④若, ,則
其中正確命題的序號是 ( )
A.①② B.②③ C.③④ D.①②③④
一、 選擇題:本大題主要考查基本知識和基本運(yùn)算.每小題5分,滿分40分.
(1)D (2)C (3)A (4)A (5)B (6)D (7)C (8)B
二、填空題:本大題主要考查基本知識和基本運(yùn)算.每小題5分,滿分30分.
(9)
(10)
(11)(0,1),
(12)
(13)大 -3
(14)3 52
三、解答題:本大題共6小題,共80分.解答應(yīng)寫出文字說明,證明過程或演算步驟.
(15)本小題主要考查三角恒等變形、三角形面積公式等基本知識,考查運(yùn)算能力.滿分14分.
解法一:
又,
.
解法二:
(1)
,
. (2)
(1)+(2)得:.
(1)-(2)得:.
.
(以下同解法一)
(16)本小題主要考查直線與平面的位置關(guān)系、棱柱等基本知識,考查空間想象能力、邏輯思維能力和運(yùn)算能力.滿分14分.
解:(I)正三棱柱的側(cè)面展開圖是長為6,寬為2的矩形
其對角線長為.
(II)如圖,將側(cè)面繞棱旋轉(zhuǎn)使其與側(cè)面在同一平面上,點(diǎn)B運(yùn)動(dòng)到點(diǎn)D的位置,連接交于M,則就是由頂點(diǎn)B沿棱柱側(cè)面經(jīng)過棱到頂點(diǎn)C1的最短路線,其長為
.
,,
故.
(III)連接DB,,則DB就是平面與平面ABC的交線
在中,
又,
由三垂線定理得.
就是平面與平面ABC所成二面角的平面角(銳角),
側(cè)面是正方形,
.
故平面與平面ABC所成的二面角(銳角)為.
(17)本小題主要考查直線、拋物線等基本知識,考查運(yùn)用解析幾何的方法分析問題和解決問題的能力.滿分14分.
解:(I)由已知條件,可設(shè)拋物線的方程為.
點(diǎn)P(1,2)在拋物線上,
,得.
故所求拋物線的方程是,
準(zhǔn)線方程是.
(II)設(shè)直線PA的斜率為,直線PB的斜率為,
則,.
PA與PB的斜率存在且傾斜角互補(bǔ),
.
由A(),B()在拋物線上,得
,(1)
, (2)
由(1)-(2)得直線AB的斜率
(18)本小題主要考查函數(shù)、數(shù)列等基本知識,考查分析問題和解決問題的能力.滿分14分.
解:(I)由,得.
由及,得.
同理,.
歸納得
(II)當(dāng)時(shí),,
,
,
.
所以是首項(xiàng)為,公比為的等比數(shù)列.
所以.
(19)本小題主要考查解不等式等基本知識,考查應(yīng)用數(shù)學(xué)知識分析問題和解決問題的能力.滿分12分.
解:(I)列車在B,C兩站的運(yùn)行誤差(單位:分鐘)分別是
和
(II)由于列車在B,C兩站的運(yùn)行誤差之和不超過2分鐘,所以
(*)
當(dāng)時(shí),(*)式變形為,
解得;
當(dāng)時(shí),(*)式變形為,
解得;
當(dāng)時(shí),(*)式變形為,
解得
綜上所述,的取值范圍是[39,].
(20)本小題主要考查不等式的證明等基本知識,考查邏輯思維能力、分析問題和解決問題的能力.滿分12分.
解:(I).除第N組外的每組至少含有個(gè)數(shù).
(II)當(dāng)?shù)趎組形成后,因?yàn)?sub>,所以還有數(shù)沒分完,這時(shí)余下的每個(gè)數(shù)必大于余差,余下數(shù)之和也大于第n組的余差,即
,
由此可得.
因?yàn)?sub>,所以.
(III)用反證法證明結(jié)論,假設(shè),即第11組形成后,還有數(shù)沒分完,由(I)和(II)可知,余下的每個(gè)數(shù)都大于第11組的余差,且,
故余下的每個(gè)數(shù) . (*)
因?yàn)榈?1組數(shù)中至少含有3個(gè)數(shù),所以第11組數(shù)之和大于,
此時(shí)第11組的余差,
這與(*)式中矛盾,所以.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com