13. 極坐標(biāo)系下.直線 與圓的公共點(diǎn)個(gè)數(shù)是 ▲ 查看更多

 

題目列表(包括答案和解析)

選考題:從以下3題中選擇2題做答,每題7分,若3題全做,則按前2題給分。

(1)(選修4—2   矩陣與變換)(本題滿分7分)

變換是將平面上每個(gè)點(diǎn)的橫坐標(biāo)乘2,縱坐標(biāo)乘4,變到點(diǎn)

(Ⅰ)求變換的矩陣;

(Ⅱ)圓在變換的作用下變成了什么圖形?

(2)(選修4—4 參數(shù)方程與極坐標(biāo))(本題滿分7分)

在極坐標(biāo)系下,已知圓O:和直線,

(Ⅰ)求圓O和直線的直角坐標(biāo)方程;

(Ⅱ)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).

(3)(選修4—5  不等式證明選講)(本題滿分7分)

對(duì)于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

(本題為選做題,請(qǐng)?jiān)谙铝腥}中任選一題作答)
A(《幾何證明選講》選做題).如圖:直角三角形ABC中,∠B=90°,AB=4,以BC為直徑的圓交邊AC于點(diǎn)D,AD=2,則∠C的大小為
30°
30°

B(《坐標(biāo)系與參數(shù)方程選講》選做題).已知直線的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
,則點(diǎn)A(2,
4
)到這條直線的距離為
2
2
2
2

C(不等式選講)不等式|x-1|+|x|<3的解集是
(-1,2)
(-1,2)

查看答案和解析>>

(本題為選做題,請(qǐng)?jiān)谙铝腥}中任選一題作答)
A(《幾何證明選講》選做題).如圖:直角三角形ABC中,∠B=90°,AB=4,以BC為直徑的圓交邊AC于點(diǎn)D,AD=2,則∠C的大小為________.
B(《坐標(biāo)系與參數(shù)方程選講》選做題).已知直線的極坐標(biāo)方程為數(shù)學(xué)公式,則點(diǎn)A(2,數(shù)學(xué)公式)到這條直線的距離為________.
C(不等式選講)不等式|x-1|+|x|<3的解集是________.

查看答案和解析>>

一、選擇題:本大題共8題,每小題5分,共40分。

題號(hào)

1

2

3

4

5

6

7

8

 

 

答案

D

B

D

B

C

A

B

B

 

 

二、填空題:本大題共7小題,每小題5分,共30分。

9.55     10.-3     11.    12.      13.1     14.2    15.

三、解答題:本大題共6小題,共80分。解答應(yīng)寫出文字說明,證明過程或演算步驟。

16.(本小題滿分12分)

已知向量,,,設(shè).

(I)求函數(shù)的最小正周期。(II),求的值域。

解:(I)因?yàn)?sub>

                 ………………………………………………………4分

            所以函數(shù)的最小正周期.……………………………………6分

(II)因?yàn)?sub>,

………………………………………………………………………8分

所以……………………………………………………………10分

所以。 ……………………………………………………………… 12分

 

17.(本小題滿分12分)

(1); ………………………………………………………4分

         (2); …………………………………………………………… 8分

         (3)表面積S=48. ……………………………………………………………… 12分

 

18.(本小題滿分14分)

解答(1)x=1+1+1=3  或者x=-1-1-1=-3---------(4分)

 (2)

i

I=3

I=5

P

(0.53)+ (0.53)=0.25

1-0.25=0.75

 

 

 

Ei=3×0.25+5×0.75=4.5---------------(8分)

 (3)

ξ

ξ=1

ξ=3

P

18×0.55=

6×0.55+2×0.53=

 

 

 

 

 

Eξ=1×+3×=----------(14分)

 

所有情況列表(僅供參考)

ξ

x

 

x

 

ξ=1

-1

-1-1+1-1+1

+1

-1-1+1-1+1

 

-1-1+1+1-1

 

-1-1+1+1-1

 

-1+1-1-1+1

 

-1+1-1-1+1

 

-1+1-1+1-1

 

-1+1-1+1-1

 

-1+1+1-1-1

 

-1+1+1-1-1

 

+1-1-1-1+1

 

+1-1-1-1+1

 

+1-1-1+1-1

 

+1-1-1+1-1

 

+1-1+1-1-1

 

+1-1+1-1-1

 

+1+1-1-1-1

 

+1+1-1-1-1

ξ=3

-3

+1-1-1-1-1

+3

-1+1+1+1+1

 

-1+1-1-1-1

 

+1-1+1+1+1

 

-1-1+1-1-1

 

+1+1-1+1+1

 

-1-1-1

 

+1+1+1

 

19、(本小題滿分14分)

 解:(I)∵  ∴  ∴

………3分

………………………………4分

設(shè)  ∴

  ∴…………………………………………6分

……………………………………………………………………7分

(II)∵, ………………………………………………………8分 

…………………………………………………………………9分

     ∴…………………………………………………………10分

     由……………………12分

     …………………………………………………………14分

∴直線EF與拋物線相切。

20.(本小題滿分14分)

解:(1)∵x,y

為恒為零

顯然

又函數(shù)為單調(diào)函數(shù),可得為等差數(shù)列

  從而---------------------------------------------------------(6分)

   (2)∵

是遞增數(shù)列。--------------------------------(12分)

當(dāng)時(shí), ------------------------------------------------------(14分)

 

21、(本小題滿分14分)

解:(1)由已知得函數(shù),且

當(dāng)又∵

當(dāng)

∴函數(shù)的單調(diào)遞增區(qū)間是

(2)設(shè),

  (5分)

當(dāng)

上連續(xù),內(nèi)是增函數(shù)。(7分)

  (8分)

  (9分)

    (10分)

(3)方法一由(1)知,設(shè)

……12分

 (14分)

內(nèi)是增函數(shù)。

 

 


同步練習(xí)冊(cè)答案