題目列表(包括答案和解析)
已知平行六面體ABCD-A1B1C1D1中,A1A⊥平面ABCD,AB=4,AD=2.若B1D⊥BC,直線B1D與平面ABCD所成的角等于,求平行六面體ABCD-A1B1C1D1的體積.
說(shuō)明
1.本解答列出試題的一種或幾種解法,如果考生的解法與所列解法不同,可參照解答中評(píng)分標(biāo)準(zhǔn)的精進(jìn)行評(píng)分。
2.評(píng)閱試卷,應(yīng)堅(jiān)持每題評(píng)閱到底,不要因?yàn)榭忌慕獯鹬谐霈F(xiàn)錯(cuò)誤而中斷對(duì)該題的評(píng)閱,當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤,影響了后繼部分,但該步以后的解答未改變這一的內(nèi)容和難度時(shí),可視影響程度決定后面部分的給分,這時(shí)原則上不應(yīng)超過(guò)后面部分應(yīng)給分?jǐn)?shù)之半,如果有較嚴(yán)重的概念性錯(cuò)誤,就不給分。
一、(第1題到第12題)
(1)p (2) (3)-49 (4)
(5)arctg2 (6)[1,3] (7) (8)(a1>0,0<q<1的一組數(shù))
(9) (10)2.6 (11)4p (12)|PF2|=17
二、(第13題至第16題)
(13)C (14)D (15)D (16)B
三、(第17題至第22題)
(17)[解] |z1?z2| = |1+sinq cosq +(cosq-sinq )i|
故|z1?z2|的最大值為,最小值為.
(18)[解]連結(jié)BC,因?yàn)?i>B1B⊥平面ABCD,B1D⊥BC,所以BC⊥BD.
在△BCD中,BC=2,CD=4,
所以
又因?yàn)橹本B1D與平面ABCD所成的角等于30°,所以∠B1DB=30°,于是
故平行六面體ABCD-A1B1C1D1的體積為
(19)[解](1)
(2)歸納概括的結(jié)論為:
若數(shù)列{an}是首項(xiàng)為a1,公比為q的等比數(shù)列,則
,n為整數(shù).
證明:
(20)[解](1)如圖建立直角坐標(biāo)系,則點(diǎn)p(11,4.5),
橢圓方程為
將b=h=6與點(diǎn)p坐標(biāo)代入橢圓方程,得,此時(shí)
因此隧道的拱寬約為33.3米.
(2)由橢圓方程
得
因?yàn)?sub>即ab≥99,且l=2a,h=b,
所以
當(dāng)S取最小值時(shí),有,得
故當(dāng)拱高約為6.4米、拱寬約為31.1米,土方工程量最。
[解二]由橢圓方程得
于是
即ab≥99,當(dāng)S取最小值時(shí),有
得以下同解一.
(21)[解](1)設(shè),則由即得
或 因?yàn)?sub>
所以 v-3>0,得 v=8,故
(2)由得B(10,5),于是直線OB方程:
由條件可知圓的標(biāo)準(zhǔn)方程為:(x-3)2+(y+1)2=10,
得圓心(3,-1),半徑為
設(shè)圓心(3,-1)關(guān)于直線OB的對(duì)稱(chēng)點(diǎn)為(x,y),則
得
故所求圓的方程為(x-1)2+(y-3)2=10.
(3)設(shè)P(x1,y1),Q(x2,y2)為拋物線上關(guān)于直線OB對(duì)稱(chēng)的兩點(diǎn),則
得
即x1、x2為方程的兩個(gè)相異實(shí)根,
于是由得
故當(dāng)時(shí),拋物線y =ax2-1上總有關(guān)于直線OB對(duì)稱(chēng)的兩點(diǎn).
(22)[解](1)對(duì)于非零常數(shù)T,f (x+T)=x+T,Tf (x)=Tx.
因?yàn)閷?duì)任意x∈R,x+T =Tx不能恒成立,
所以f (x)=x M .
(2)因?yàn)楹瘮?shù)f (x)=ax (a>0且a≠1)的圖象與函數(shù)y=x的圖象有公共點(diǎn),
所以方程組: 有解,消去y得ax=x,
顯然x=0不是方程的ax=x解,所以存在非零常數(shù)T,使aT=T.
于是對(duì)于f (x)=ax ,有
f (x+T)=ax+T = aT?ax=T?ax =T f (x),
故f (x)=ax∈M.
(3)當(dāng)k=0時(shí),f (x)=0,顯然f (x)=0∈M.
當(dāng)k≠0時(shí),因?yàn)?i>f (x)=sinkx∈M,所以存在非零常數(shù)T,
對(duì)任意x∈R,有
f (x+T)= T f (x)成立,即sin(kx+kT)= T sinkx.
因?yàn)?i>k≠0時(shí),且x∈R,所以kx∈R,kx+kT∈R,
于是sinkx∈[-1,1],sin(kx+kT) ∈[-1,1],
故要使sin(kx+kT) = Tsinkx成立,只有T=±1.
當(dāng)T=1時(shí),sin(kx+k)= sinkx成立,則k=2mp,m∈Z.
當(dāng)T=-1時(shí),sin(kx-k)= -sinkx成立,
即sin(kx-k+p) = sinkx成立,
則-k+p =2mp,m∈Z,即k= -(2m-1) p,m∈Z.
綜合得,實(shí)數(shù)k的取值范圍是{k | k= mp,m∈Z }.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com