題目列表(包括答案和解析)
在△OAB中,O為坐標原點,,其中,則當△OAB
的面積達到最小時,θ的值
A.
B.
C.
D.
在△OAB中,O為坐標原點,,其中,則當△OAB的面積達到最小值時,θ的值
A.
B.
C.
D.
在以O(shè)為原點的平面直角坐標系中,有點A(4,-3).已知△OAB是直角三角形,∠A=90°,且|AB|=2|OA|,其中點B的縱坐標大于零.
(1)求點B的坐標;
(2)求圓x2-6x+y2+2y=0關(guān)于直線OB對稱的圓的方程.
已知函數(shù)和.其中.
(Ⅰ)若函數(shù)與的圖像的一個公共點恰好在x軸上,求的值;
(Ⅱ)若函數(shù)與圖像相交于不同的兩點A、B,O為坐標原點,試問:△OAB的面積S有沒有最值?如果有,求出最值及所對應(yīng)的的值;如果沒有,請說明理由.
(Ⅲ)若和是方程的兩根,且滿足,證明:當時,.
已知函數(shù)和.其中.
(Ⅰ)若函數(shù)與的圖像的一個公共點恰好在x軸上,求的值;
(Ⅱ)若函數(shù)與圖像相交于不同的兩點A、B,O為坐標原點,試問:△OAB的面積S有沒有最值?如果有,求出最值及所對應(yīng)的的值;如果沒有,請說明理由.
(Ⅲ)若和是方程的兩根,且滿足,證明:當時,.
一、選擇題:
1―5:ACCCB 6―10:CDACD 11―12:BC
二、填空題:
13.2 14. 15.5 16.① ②球的體積函數(shù)的導數(shù)等于球的表面積函數(shù)
三、解答題:
17.(本小題滿分12分)
解:(I)……………………2分
……………………4分
……………………………………………………………………5分
(II)、B均為銳角且B<A
又C為鈍角
∴最短邊為b……………………………………………………7分
由,解得………………………………9分
又…………………………12分
18.(本小題滿分12分)
解:(I)
………………………………3分
故…………………………………………………4分
(II)令.
若時,當時,函數(shù)
…………………………………………………………6分
若時,當時,函數(shù)
…………………………………………………………8分
(III)由
確定單調(diào)遞增的正值區(qū)間是;
由
確定單調(diào)遞減的正值區(qū)間是;………10分
綜上,當時,函數(shù)的單調(diào)遞增區(qū)間為.
當時,函數(shù)的單調(diào)遞增區(qū)間為.……12分
注:①
的這些
等價形式中,以最好用. 因為復合函數(shù)
的中間變量是增函數(shù),對求的單調(diào)區(qū)間來說,
只看外層函數(shù)的單調(diào)性即可.否則,利用的其它形
式,例如求單調(diào)區(qū)間是非常容易出錯的. 同學們可以嘗試做一
下的其它形式,認真體會,比較優(yōu)劣!
②今后遇到求類似的單調(diào)區(qū)間問題,應(yīng)首先通過誘導公式將轉(zhuǎn)化為標準形
式:(其中A>0,ω>0),然后再行求
解,保險系數(shù)就大了.
19.(本小題滿分12分)
解:(I)由已知……………………1分
…………3分
由已知
∴公差d=1…………………………………………………………4分
……………………………………………………6分
(II)設(shè)…………………………7分
當時,是k的增函數(shù),也是k的增函數(shù).
………………………………10分
又
不存在,使…………………………………12分
20.(本小題滿分12分)
解:恒成立
只需小于的最小值…………………………………………2分
而當時,≥3……………………………………………4分
……………………………………………………6分
存在極大值與極小值
有兩個不等的實根…………………………8分
或…………………………………………………………10分
要使“P且Q”為真,只需
故m的取值范圍為[2,6].…………………………………………………12分
21.(本小題滿分12分)
解:設(shè)此工廠應(yīng)分別生產(chǎn)甲、乙兩種產(chǎn)品x噸、y噸,獲得利潤z萬元………1分
依題意可得約束條件:
|