(2)若函數(shù)在定義域上是減函數(shù).則任取且都有 成立. 即 查看更多

 

題目列表(包括答案和解析)

函數(shù)f(x)是定義域?yàn)镈,若對(duì)于任意x1,x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù)。設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿足以下三個(gè)條件:①f(0)=0;②f(1-x)+f(x)=1;③f()=f(x),則的值為(    )。

查看答案和解析>>

已知定義域?yàn)椋?,+∞)的函數(shù)f(x)滿足:對(duì)任意x∈(0,+∞),恒有f(2x)=2f(x)成立;當(dāng)x∈(1,2]時(shí),f(x)=2-x.給出如下結(jié)論:
①對(duì)任意m∈Z,有f(2m)=0;
②函數(shù)f(x)的值域?yàn)閇0,+∞);
③存在n∈Z,使得f(2n+1)=9;
④“若k∈Z,若(a,b)⊆(2k,2k+1)”,則“函數(shù)f(x)在區(qū)間(a,b)上單調(diào)遞減”
其中所有正確結(jié)論的序號(hào)是
①②④
①②④

查看答案和解析>>

已知定義域?yàn)?0,+∞)的函數(shù)f(x)滿足:對(duì)任意x∈(0,+∞),恒有f(2x)=2f(x)成立;當(dāng)x∈(1,2]時(shí),f(x)=2-x.給出如下結(jié)論:

①對(duì)任意m∈Z,有f(2m)=0;

②函數(shù)f(x)的值域?yàn)閇0,+∞);

③存在n∈Z,使得f(2n+1)=9;

④“若k∈Z,(a,b)(2k,2k+1)”,則“函數(shù)f(x)在區(qū)間(a,b)上單調(diào)遞減”

其中所有正確結(jié)論的序號(hào)是________.

查看答案和解析>>

如果函數(shù)f(x)在區(qū)間D上有定義,且對(duì)任意x1,x2∈D,x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2
,則稱函數(shù)f(x)在區(qū)間D上的“凹函數(shù)”.
(Ⅰ)已知f(x)=ln(1+ex)-x(x∈R),判斷f(x)是否是“凹函數(shù)”,若是,請(qǐng)給出證明;若不是,請(qǐng)說明理由;
(Ⅱ)已知f(x)=ln(1+ex)-x是定義域在R上的減函數(shù),且A、B、C是其圖象上三個(gè)不同的點(diǎn),求證:△ABC是鈍角三角形.

查看答案和解析>>

研究函數(shù)f(x)=
x
1+|x|
(x∈R)
的性質(zhì),分別給出下面結(jié)論( 。
①若x1=-x2,則一定有f(x1)=-f(x2);
②函數(shù)f(x)在定義域上是減函數(shù);
③函數(shù)f(x)的值域?yàn)椋?1,1);
④若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則fn(x)=
x
1+n|x|
對(duì)任意n∈N*恒成立,
其中正確的結(jié)論有( 。

查看答案和解析>>


同步練習(xí)冊(cè)答案