題目列表(包括答案和解析)
已知函數(shù)是奇函數(shù),當(dāng)時, f(x)=x(1+x),則當(dāng)時,f(x)= .
已知函數(shù)是奇函數(shù),定義域為區(qū)間D(使表達(dá)式有意義的實數(shù)x 的集合).
(1)求實數(shù)m的值,并寫出區(qū)間D;
(2)若底數(shù)a>1,試判斷函數(shù)y=f(x)在定義域D內(nèi)的單調(diào)性,并說明理由;
(3)當(dāng)x∈A=[a,b)(A⊆D,a是底數(shù))時,函數(shù)值組成的集合為[1,+∞),求實數(shù)a、b的值.
已知函數(shù)是奇函數(shù),(其中)
(1)求實數(shù)m的值;
(2)在時,討論函數(shù)f(x)的增減性;
(3)當(dāng)x時,f(x)的值域是(1,),求n與a的值。
一、1. [0,2] 2. 2≤x<5或x>5 3. 4 4. 5. 720 6. 7. x(1-x)
8.(文) 2 (理) 9. 10. 11. ①②④ 12. 0
二、13. A 14. D 15. A 16.C
三、
17. 解:(1)上的奇函數(shù),即。
(2)由(1)得:,即,
。
18. 解:有兩個不等的負(fù)根, …………3分
無實根,得 ……6分
有且只有一個為真,若p真q假,得 ………………9分
若p假q真,得 ………………11分
綜合上述得 ……………………12分
19.f(x)在(-∞,-1)上是增函數(shù), f(x)在(-1,0)上是減函數(shù)。 ………………4分
證明:任取x1,x2,使x1<x2<0,則
………………7分
∵ x1<x2<0,x2-x1>0 x1?x2>0, 當(dāng)x1<x2<-1時
∴
即
∴ f(x)在(-∞,-1)上是增函數(shù)。 ………………10分
當(dāng)-1<x1<x2<0時
f(x2)-f(x1)<0,即f(x2)<f(x1)
∴ f(x)在(-1,0)上是減函數(shù)。 ………………12分
20. 解:(1)當(dāng)a=2時,A=(2,7),B=(4,5)∴ AB=(4,5).………4分
(2)∵ B=(
要使BA,必須,此時a=-1;…………………………………7分
當(dāng)a=時,A=,使BA的a不存在; ……………………………………8分
當(dāng)a>時,A=(2,
要使BA,必須,此時1≤a≤3. ………………………………11分綜上可知,使BA的實數(shù)a的取值范圍為[1,3]∪{-1}………………………12分
21、解:解:據(jù)題意,商品的價格隨時間變化,且在不同的區(qū)間與上,價格隨時間的變化的關(guān)系式也不同,故應(yīng)分類討論
設(shè)日銷售額為
⑴當(dāng)時,
。 ………………3分
所以,當(dāng)或11時,。 ………6分
⑵當(dāng)時, …9分
所以,當(dāng)時,。 …11分
綜合(1)、(2)知當(dāng)或11時,日銷售額最大,最大值為176!12分
22、解:(1)顯然函數(shù)的值域為; ……………4分
(2)若函數(shù)在定義域上是減函數(shù),
則任取且都有 成立,
即只要即可,
由,故,所以,
故的取值范圍是; ……………9分
(3)當(dāng)時,函數(shù)在上單調(diào)增,無最小值,
當(dāng)時取得最大值;
由(2)得當(dāng)時,函數(shù)在上單調(diào)減,無最大值,
當(dāng)時取得最小值;
當(dāng)時,函數(shù)在上單調(diào)減,在上單調(diào)增,無最大值, ……………13分
當(dāng) 時取得最小值. ……………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com