△MAB的面積分別為的最小值是 A.9 B.18 C.16 D.20 查看更多

 

題目列表(包括答案和解析)

已知△ABC的面積為1,設(shè)M是△ABC內(nèi)的一點(diǎn)(不在邊界上),定義f(M)=(x,y,z),其中x,y,z分別表示△MBC,△MCA,△MAB的面積,若,則的最小值為( )
A.8
B.9
C.16
D.18

查看答案和解析>>

已知M是面積為1的△ABC內(nèi)的一點(diǎn),若△MBC,△MCA,△MAB的面積分別為,x,y,則的最小值為( )
A.20
B.18
C.16
D.9

查看答案和解析>>

設(shè)內(nèi)一點(diǎn),且的面積為2,定義,其中分別是ΔMBC,ΔMCA,ΔMAB的面積,若內(nèi)一動點(diǎn)滿足,則的最小值是(   )

A.1                B.4                C.9                D.12

 

查看答案和解析>>

設(shè)內(nèi)一點(diǎn),且的面積為2,定義,其中分別是ΔMBC,ΔMCA,ΔMAB的面積,若內(nèi)一動點(diǎn)滿足,則的最小值是(   )

A.1B.4C.9D.12

查看答案和解析>>

設(shè)內(nèi)一點(diǎn),且的面積為2,定義,其中分別是ΔMBC,ΔMCA,ΔMAB的面積,若內(nèi)一動點(diǎn)滿足,則的最小值是(   )
A.1B.4C.9D.12

查看答案和解析>>

一、選擇題

      2,4,6

      二、填空題

      13.   14.3   15.-192    16. 22.2

      三、解答題

      17.解:(1)∵

      ①……………………2分

      ②……………………4分

      聯(lián)立①,②解得:……………………6分

      (2)

      ……………………10分

      ……………………11分

      當(dāng)

      此時(shí)……………………12分

      18.解:以D1為原點(diǎn),D1A1所在直線為x軸,D1C1所在直線為y軸,D1D所在直線為z軸建立空間直角坐標(biāo)系,

      則D1(0,0,0),A1(2,0,0),B1(2,2,0),C1(0,2,0),D(0,0,2),A(2,0,2),B(2,2,2),C(0,2,2)P(1,1,4)………………2分

         (1)∵

      ∴PA⊥B1D1.…………………………4分

      (2)平面BDD1B­1的法向量為……………………6分

      設(shè)平面PAD的法向量,則n⊥

      …………………………10分

      設(shè)所求銳二面角為,則

      ……………………12分

      19.解:(1)從50名教師隨機(jī)選出2名的方法數(shù)為

      選出2人使用版本相同的方法數(shù)為

      故2人使用版本相同的概率為:

      …………………………5分

      (2)∵,

      0

      1

      2

      P

      的分布列為

       

       

      ………………10分

      ……………………12分

      可以不扣分)

      20.解:(1)依題意,

      當(dāng)

      兩式相減得,得

      ……………………4分

      當(dāng)n=1時(shí),

      =1適合上式……………………5分

      …………………………6分

      (2)由題意,

      ………………10分

      不等式恒成立,即恒成立.…………11分

      經(jīng)檢驗(yàn):時(shí)均適合題意(寫出一個(gè)即可).……………………12分

      21.解:(1)設(shè)

      由條件知

      故C的方程為:……………………4分

      (2)由

      …………………………5分

      設(shè)l與橢圓C交點(diǎn)為

      (*)

      ……………………7分

      消去

      整理得………………9分

      ,

      容易驗(yàn)證所以(*)成立

      即所求m的取值范圍為………………12分

      22.(1)證明:假設(shè)存在使得

      …………………………2分

      上的單調(diào)增函數(shù).……………………5分

      是唯一的.……………………6分

      (2)設(shè)

      上的單調(diào)減函數(shù).

      ……………………8分

      …………10分

      …………12分

      為鈍角

      ∴△ABC為鈍角三角形.……………………14分

       

       


      同步練習(xí)冊答案