(3)是經過橢圓長軸頂點且與長軸垂直的直線.是兩個焦點.點.不與重合.若.則有.類比此結論到雙曲線.是經過焦點且與實軸垂直的直線.是兩個頂點.點.不與重合.若.試求角的取值范圍. 查看更多

 

題目列表(包括答案和解析)

已知橢圓C:
x2
a3
+
y2
b2
=1(a>b>0)
的右焦點為F,離心率為
2
2
,過點F且與實軸垂直的直線被橢圓截得的線段長為
2
,O為坐標原點.
(I)求橢圓C的方程;
(Ⅱ)設經過點M(0,2)作直線A B交橢圓C于A、B兩點,求△AOB面積的最大值;
(Ⅲ)設橢圓的上頂點為N,是否存在直線l交橢圓于P,Q兩點,使點F為△PQN的垂心?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

如圖,橢圓的中心在原點,F(xiàn)為橢圓的左焦點,B為橢圓的一個頂點,過點B作與FB垂直的直線BP交x軸于P點,且橢圓的長半軸長a和短半軸長b是關于x的方程3x2-3
3
cx+2c2=0
(其中c為半焦距)的兩個根.
(I)求橢圓的離心率;
(Ⅱ)經過F、B、P三點的圓與直線x+
3
y-
3
=0
相切,試求橢圓的方程.

查看答案和解析>>

如圖,橢圓的中心在原點,F(xiàn)為橢圓的左焦點,B為橢圓的一個頂點,過點B作與FB垂直的直線BP交x軸于P點,且橢圓的長半軸長a和短半軸長b是關于x的方程3x2-cx+2c2=0(其中c為半焦距)的兩個根。
(1)求橢圓的離心率;
(2)經過F、B、P三點的圓與直線相切,試求橢圓的方程。

查看答案和解析>>

如圖,橢圓的中心在原點,F(xiàn)為橢圓的左焦點,B為橢圓的一個頂點,過點B作與FB垂直的直線BP交x軸于P點,且橢圓的長半軸長a和短半軸長b是關于x的方程(其中c為半焦距)的兩個根.
(I)求橢圓的離心率;
(Ⅱ)經過F、B、P三點的圓與直線相切,試求橢圓的方程.

查看答案和解析>>

精英家教網如圖,已知橢圓
x2
a2
+
y2
b2
=1 (a>b>0)
的長軸為AB,過點B的直線l與x軸垂直.直線(2-k)x-(1+2k)y+(1+2k)=0(k∈R)所經過的定點恰好是橢圓的一個頂點,且橢圓的離心率e=
3
2

(1)求橢圓的標準方程;
(2)設P是橢圓上異于A、B的任意一點,PH⊥x軸,H為垂足,延長HP到點Q使得HP=PQ,連接AQ延長交直線l于點M,N為MB的中點.試判斷直線QN與以AB為直徑的圓O的位置關系.

查看答案和解析>>

 

一 、選擇題

1.C.  2.A.  3.A.  4.A.  5.A. 6.C.  7.A.  8.A.  9.C.  10.D.  11.C.12.D.

一、                                                              填空題

13.. 14.2. 15.16.  16.13.

三、解答題

17.(理科) (1)由(1+tanA)(1+tanB)=2,得

tanA+tanB=1-tanAtanB,

即tan(A+B)=1.              

∵A、B為△ABC內角, ∴A+B=.  則 C=(定值).

(2)已知△ABC內接于單位圓, ∴△ABC外接圓半徑R=1.

∴由正弦定理得:,.

則△ABC面積S=

                  =

                  =

∵  0<B<, ∴.

    故 當時,△ABC面積S的最大值為.   

(文科) (1),

,,,∴

∴ 向量的夾角的大小為

(2)

為鄰邊的平行四邊形的面積,

據此猜想,的幾何意義是以為鄰邊的平行四邊形的面積.

18. (1)學生甲恰好抽到3道歷史題,2道地理題的概率為

       (2)若學生甲被評為良好,則他應答對5道題或4道題

       而答對4道題包括兩種情況:①答對3道歷史題和1道地理(錯一道地理題);②答對2道歷史題和2道地理題(錯一道歷史題)。

       設答對5道記作事件A;

       答對3道歷史題,1道地理題記作事件B;

       答對2道歷史題,2道地理題,記作事件C;

       ,

          ,

         

       ∴甲被評為良好的概率為:

      

19.  (1)延長AC到G,使CG=AC,連結BG、DG,E是AB中點,

    故直線BG和BD所成的銳角(或直角)就是CE和BD所成的角.

   

   (2)設C到平面ABD的距離為h

   

   

20. (1)

(2) 由(1)知:,故是增函數

對于一切恒成立.

由定理知:存在

由(1)知:

  

的一般性知:

21. (1)以中點為原點,所在直線為軸,建立平面直角坐標系,則

 

 

 

 

 

 

 

 

 

,由,此即點的軌跡方程.

   (2)將向右平移一個單位,再向下平移一個單位后,得到圓

依題意有

   (3)不妨設點的上方,并設,則,

所以,由于,

22.(理科)⑴ ∵f(x)+g(x)=ax,∴f(-x)+ g(-x)=a-x

∵f(x)是奇函數,g(x)是偶函數,∴-f(x)+g(x)=a-x

∴f(x)=,g(x)=

是R上的減函數,

∴y=f -1(x)也是R上的減函數. 

 

 n>2,上是增函數.是減函數;

上是減函數.是增函數.

(文科) (1)∵函數時取得極值,∴-1,3是方程的兩根,

(2),當x變化時,有下表

x

(-∞,-1)

-1

(-1,3)

3

(3,+∞)

f(x)

+

0

-

0

+

f(x)

Max

c+5

Min

c-27

時f(x)的最大值為c+54.

要使f(x)<2|c|恒成立,只要c+54<2|c|即可.

當c≥0時c+54<2c,  ∴c>54.

當c<0時c+54<-2c,∴c<-18.

∴c∈(-∞,-18)∪(54,+∞)


同步練習冊答案