(1) 若函數(shù), ,寫出函數(shù)的解析式; 查看更多

 

題目列表(包括答案和解析)

若函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0)的定義域?yàn)殚_區(qū)間(3,10),函數(shù)f(x)的值域是一個(gè)左閉右開的區(qū)間,則滿足要求的函數(shù)f(x)的解析式可以是f(x)=
 
(寫出一個(gè)解析式即可).

查看答案和解析>>

若函數(shù)f(x)滿足下列性質(zhì):
(1)定義域?yàn)镽,值域?yàn)閇1,+∞);
(2)圖象關(guān)于x=2對(duì)稱;
(3)對(duì)任意x1,x2∈(-∞,0),且x1≠x2,都有
f(x1)-f(x2)x1-x2
<0,
請(qǐng)寫出函數(shù)f(x)的一個(gè)解析式
f(x)=(x-2)2+1
f(x)=(x-2)2+1
(只要寫出一個(gè)即可).

查看答案和解析>>

若函數(shù)符合下列條件:(1)f(x)的定義域與值域相同;(2)在定義域內(nèi)f(x)+f(-x)=0;(3)f(x)在 (0,+∞)上為減函數(shù),則f(x)=
1
x
1
x
(寫出其中一個(gè)解析式).

查看答案和解析>>

若函數(shù)g(x)=loga(x+1)(a>0,且a≠1),函數(shù)g(x)的圖象與函數(shù)h(x)的圖象關(guān)于y軸對(duì)稱.
(Ⅰ)試寫出函數(shù)h(x)的解析式;
(Ⅱ)設(shè)f(x)=g(x)-h(x),判斷函數(shù)f(x)的奇偶性并予以證明;
(Ⅲ)當(dāng)0<a<1時(shí),求f(x)>0成立的x的取值范圍.

查看答案和解析>>

若函數(shù)f(x)滿足下列性質(zhì):
(1)定義域?yàn)镽,值域?yàn)閇1,+∞);
(2)圖象關(guān)于x=2對(duì)稱;
(3)對(duì)任意x1,x2∈(-∞,0),且x1≠x2,都有<0,
請(qǐng)寫出函數(shù)f(x)的一個(gè)解析式    (只要寫出一個(gè)即可).

查看答案和解析>>

 

一、選擇題:

(1)D     (2)B     (3)C     (4)B     (5)B     (6)A   

(7)C     (8)A     (9)D    (10)B     (11)C    (12)B

 

二、填空題:

(13)2               (14)  (15)200  (16)②③ 

 

三、解答題

17.   (1) 故函數(shù)的定義域是(-1,1). ………… 2分

(2)由,得(R),所以,      ……………  5分

所求反函數(shù)為( R).                …………………  7分

(3) ==-,所以是奇函數(shù).………  12分

 

18. (1)設(shè),則.        …………………  1分

由題設(shè)可得解得      ………………… 5分

所以.                                …………………  6分

(2) ,. ……  8分

列表:

 

 

 

                                                     …………………  11分

由表可得:函數(shù)的單調(diào)遞增區(qū)間為,       ………………  12分

19.(1)證明:設(shè),且,

,且.                    …………………  2分

上是增函數(shù),∴.        …………………  4分

為奇函數(shù),∴,                      

, 即上也是增函數(shù).         ………………  6分

(2)∵函數(shù)上是增函數(shù),且在R上是奇函數(shù),

上是增函數(shù).                       ……………………  7分

于是

 

.        …………  10分

∵當(dāng)時(shí),的最大值為

∴當(dāng)時(shí),不等式恒成立.                         ………………  12分

 

20. ∵AB=x, ∴AD=12-x.                                   ………………1分

,于是.         ………………3分

由勾股定理得   整理得    …………5分

因此的面積 .  ……7分

  得                                ………………8分

.                         ………………10分

當(dāng)且僅當(dāng)時(shí),即當(dāng)時(shí),S有最大值  ……11分

答:當(dāng)時(shí),的面積有最大值             ………………12分

 

21. (1) h (x)                            …………………5分

   (2) 當(dāng)x≠1時(shí), h(x)= =x-1++2,                       ………………6分

      若 x > 1時(shí), 則 h (x)≥4,其中等號(hào)當(dāng) x = 2時(shí)成立               ………………8分

若x<1時(shí), 則h (x) ≤ 0,其中等號(hào)當(dāng) x = 0時(shí)成立               ………………10分

∴函數(shù) h (x)的值域是 (-∞,0 ] ∪ { 1 } ∪ [ 4 ,+∞)             ………………12分

 

22. (1)

切線PQ的方程             ………2分

   (2)令y=0得                           ………4分

 

解得 .                         ………6分

又0<t<6, ∴4<t<6,                                            ………7分

g (t)在(m, n)上單調(diào)遞減,故(m, n)              ………8分

(3)當(dāng)在(0,4)上單調(diào)遞增,

 

∴P的橫坐標(biāo)的取值范圍為.                               ………14分

 

 


同步練習(xí)冊(cè)答案