查看更多

 

題目列表(包括答案和解析)

本題滿分14分)已知函數(shù),,其中.w.w.w.k.s.5.u.c.o.m    

   (I)設(shè)函數(shù).若在區(qū)間上不單調(diào),求的取值范圍;

   (II)設(shè)函數(shù)  是否存在,對任意給定的非零實(shí)數(shù),存在惟一的非零實(shí)數(shù)),使得成立?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

(本題滿分14分) 若F1、F2為雙曲線的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),P在雙曲線左支上,M在右準(zhǔn)線上,且滿足(Ⅰ)求此雙曲線的離心率;(Ⅱ)若此雙曲線過點(diǎn),求雙曲線方程;(Ⅲ)設(shè)(Ⅱ)中雙曲線的虛軸端點(diǎn)為B1,B2(B1在y軸正半軸上),求B2作直線AB與雙曲線交于A、B兩點(diǎn),求時(shí),直線AB的方程.

查看答案和解析>>

(本題滿分14分)某單位用2160萬元購得一塊空地,計(jì)劃在該地塊上建造一棟至少10層,每層2000平方米的樓房。經(jīng)測算,如果將樓房建為x(x ≥ 10)層,則每平方米的平均建筑費(fèi)用為560 + 48x(單位:元).⑴寫出樓房平均綜合費(fèi)用y關(guān)于建造層數(shù)x的函數(shù)關(guān)系式;

⑵該樓房應(yīng)建造多少層時(shí),可使樓房每平方米的平均綜合費(fèi)用最少?最少值是多少?

(注:平均綜合費(fèi)用 = 平均建筑費(fèi)用 + 平均購地費(fèi)用,平均購地費(fèi)用 = )

查看答案和解析>>

(本題滿分14分)如圖,已知二次函數(shù),直線lx = 2,直線ly = 3tx(其中1< t < 1,t為常數(shù));若直線l、l與函數(shù)的圖象所圍成的封閉圖形如圖(5)陰影所示.(1)求y = ;(2)求陰影面積s關(guān)于t的函數(shù)s = u(t)的解析式;(3)若過點(diǎn)A(1,m)(m≠4)可作曲線s=u(t)(tR)的三條切線,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

(本題滿分14分)

在梯形ABCD中,AB⊥AD,AB∥CD,A、B是兩個(gè)定點(diǎn),其坐

標(biāo)分別為(0,-1)、(0,1),C、D是兩個(gè)動(dòng)點(diǎn),且滿足|CD|=|BC|.

(1)求動(dòng)點(diǎn)C的軌跡E的方程;

(2)試探究在軌跡E上是否存在一點(diǎn)P?使得P到直線y=x-2的

距離最短;

(3)設(shè)軌跡E與直線所圍成的圖形的

面積為S,試求S的最大值。

其它解法請參照給分。

查看答案和解析>>

 

一、選擇題:

(1)D     (2)B     (3)C     (4)B     (5)B     (6)A   

(7)C     (8)A     (9)D    (10)B     (11)C    (12)B

 

二、填空題:

(13)2               (14)  (15)200  (16)②③ 

 

三、解答題

17.   (1) 故函數(shù)的定義域是(-1,1). ………… 2分

(2)由,得(R),所以,      ……………  5分

所求反函數(shù)為( R).                …………………  7分

(3) ==-,所以是奇函數(shù).………  12分

 

18. (1)設(shè),則.        …………………  1分

由題設(shè)可得解得      ………………… 5分

所以.                                …………………  6分

(2) ,. ……  8分

列表:

 

 

 

                                                     …………………  11分

由表可得:函數(shù)的單調(diào)遞增區(qū)間為,       ………………  12分

19.(1)證明:設(shè),且,

,且.                    …………………  2分

上是增函數(shù),∴.        …………………  4分

為奇函數(shù),∴,                      

, 即上也是增函數(shù).         ………………  6分

(2)∵函數(shù)上是增函數(shù),且在R上是奇函數(shù),

上是增函數(shù).                       ……………………  7分

于是

 

.        …………  10分

∵當(dāng)時(shí),的最大值為,

∴當(dāng)時(shí),不等式恒成立.                         ………………  12分

 

20. ∵AB=x, ∴AD=12-x.                                   ………………1分

,于是.         ………………3分

由勾股定理得   整理得    …………5分

因此的面積 .  ……7分

  得                                ………………8分

.                         ………………10分

當(dāng)且僅當(dāng)時(shí),即當(dāng)時(shí),S有最大值  ……11分

答:當(dāng)時(shí),的面積有最大值             ………………12分

 

21. (1) h (x)                            …………………5分

   (2) 當(dāng)x≠1時(shí), h(x)= =x-1++2,                       ………………6分

      若 x > 1時(shí), 則 h (x)≥4,其中等號當(dāng) x = 2時(shí)成立               ………………8分

若x<1時(shí), 則h (x) ≤ 0,其中等號當(dāng) x = 0時(shí)成立               ………………10分

∴函數(shù) h (x)的值域是 (-∞,0 ] ∪ { 1 } ∪ [ 4 ,+∞)             ………………12分

 

22. (1)

切線PQ的方程             ………2分

   (2)令y=0得                           ………4分

 

解得 .                         ………6分

又0<t<6, ∴4<t<6,                                            ………7分

g (t)在(m, n)上單調(diào)遞減,故(m, n)              ………8分

(3)當(dāng)在(0,4)上單調(diào)遞增,

 

∴P的橫坐標(biāo)的取值范圍為.                               ………14分

 

 


同步練習(xí)冊答案