C.曲線是的圖象.是的圖象.是的圖象 查看更多

 

題目列表(包括答案和解析)

圖中的曲線是的圖象,已知的值為,,,,則相應曲線依次為             (    )

   A.,,,    B.,

C.,,    D.,,,

查看答案和解析>>

曲線C1、C2、C3、C4分別是指數(shù)函數(shù)y=ax,y=bx,y=cx和y=dx的圖象,則a、b、c、d與1的大小關系是

[  ]
A.

a<b<1<c<d

B.

a<b<1<d<c

C.

b<a<1<c<d

D.

b<a<1<d<c

查看答案和解析>>

圖中曲線是冪函數(shù)y=xn在第一象限的圖像,已知n可取±2,±四個值,則相應于曲線的n依次為(   )

A.-2,-,,2          B.2,,-,-2  

C. -,-2,2,          D. 2,,-2, -

查看答案和解析>>

圖中曲線是冪函數(shù)y=xn在第一象限的圖象,已知n取±3,±四個值,則相應于曲線C1,C2,C3,C4的n依次為  (  )

A.-3,-,3      B.3,,-,-3

C.-,-3,3,       D.3,,-3,-

 

查看答案和解析>>

函數(shù)的圖象與方程的曲線有著密切的聯(lián)系,如把拋物線的圖象繞原點沿逆時針方向旋轉(zhuǎn)就得到函數(shù)的圖象.若把雙曲線繞原點按逆時針方向旋轉(zhuǎn)一定角度后,能得到某一個函數(shù)的圖象,則旋轉(zhuǎn)角可以是(   )

A.            B.             C.            D.

 

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

C

B

A

D

B

C

C

D

D

A

C

二、填空題

13.     14.      15.4       16.③④

三、解答題

17.解:(1)∵,

.           …………2分

,       …………4分

,∴.                 …………6分

   (2)∵,,

.      …………8分

,

.…………10分

18.(1)證明:連結(jié)BD交AC于點M,取BE的中點N,

連結(jié)MN,則MN∥ED且MN=ED,依題意,

知AG∥ED且AG=ED,

∴MN∥AG且MN=AG.

故四邊形MNAG是平行四邊形, AM∥GN,

即AC∥GN,…………3分

又∵

∴ AC∥平面GBE.…………6分

   (2)解:延長EG交DA的延長線于H點,

連結(jié)BH,作AO⊥GH于O點,連結(jié)BO.

∵ 平面ABCD⊥平面ADEF,平面ABCD∩平面ADEF=AD ,AB⊥AD

∴ AB⊥平面ADEF,由三垂線定理,知AB⊥GH,

故∠AOB就是二面角B-GE-D的平面角.…………8分

∵ 平面ABCD⊥平面ADEF,平面ABCD∩平面ADEF=AD ,ED⊥AD

∴ ED⊥平面ABCD,

故∠EBD就是直線BE與平面ABCD成的角,……10分

知∠EBD=45°,設AB=a,則BE=BD=a.

在直角三角形AGH中:AH=AD= a,AG=a,

HG=,AO=

在直角三角形ABO中:tan∠AOB=

∴ ∠AOB=60°.

故二面角B-GE-D的大小為60°.…………12分

19.解:(1)記A0表示事件“取出的2件產(chǎn)品中無二等品”,A1表示事件“取出的2件產(chǎn)品中恰有1件是二等品”.則A0、A1互斥,且A=A0+A1

故P (A)=P (A0+A1)=P (A0) +P (A1)=(1-p)2+Cp (1-p)=1-p2

依題意,知1-p2=0.96,又p>0,得p=0.2.…………6分

   (2)(理)ξ可能的取值為0,1,2.

若該批產(chǎn)品共100件,由(1)知,其中共有二等品100×0.2=20件,故

P(ξ=0)=.P(ξ=1)=.  

P(ξ=2)=.…………9分

所以ξ的分布列為

ξ

0

1

2

P

ξ的期望…………12分

20.解 (1)上單調(diào)遞增,上單調(diào)遞減,

       有兩根

            ……4分

    令,

    則

因為上恒大于0,所以上單調(diào)遞增,

, 

        .                            ……………6分

   (2),

    

      .                        ………………8分

      ①當時,,定義域為

    恒成立,上單調(diào)遞增;           …………9分

       ②當時,,定義域:

       恒成立,上單調(diào)遞增;     …………10分

       ③當時,,定義域:

       由,由

       故在上單調(diào)遞增;在上單調(diào)遞減.     …………11分

       所以當時,上單調(diào)遞增,故無極值;

       當時,上單增;故無極值.

       當時,上單調(diào)遞增;在上單調(diào)遞減.

       故有極小值,且的極小值為. …12分

21.解:(I)設依題意得

…………2分

消去,整理得.…………4分

    當時,方程表示焦點在軸上的橢圓;

    當時,方程表示焦點在軸上的橢圓;

    當時,方程表示圓.        …………6分

   (II)當時,方程為,   

       設直線的方程為,

                         …………8分

消去.…………10分

根據(jù)已知可得,故有,

*直線的斜率為.  …………12分

22.證明  (Ⅰ)即證.

  ,,

  .…………2分

假設,則

,…………4分

,

  .

綜上所述,根據(jù)數(shù)學歸納法,命題成立. …………6分

   (Ⅱ)由(Ⅰ),得

,…………8

  .…………10

又  , 

.………12分

 

 

 

 

 

 

 

 

 

 

 


同步練習冊答案