1.答題前.考生先在答題卡上用直徑0.5毫米黑色墨水簽字筆將自己的姓名.準(zhǔn)考證號填寫清楚. 查看更多

 

題目列表(包括答案和解析)

本題(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分。作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.

(1)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程

 以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸。已知點的直角坐標(biāo)為(1,-5),點的極坐標(biāo)為若直線過點,且傾斜角為,圓為圓心、為半徑。

(I)求直線的參數(shù)方程和圓的極坐標(biāo)方程;

(II)試判定直線和圓的位置關(guān)系.

(2)(本小題滿分7分)選修4-4:矩陣與變換

把曲線先進行橫坐標(biāo)縮為原來的一半,縱坐標(biāo)保持不變的伸縮變換,再做關(guān)于軸的反射變換變?yōu)榍,求曲線的方程.

(3)(本小題滿分7分)選修4-5:不等式選講

關(guān)于的一元二次方程對任意無實根,求實數(shù)的取值范圍.

 

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

C

B

A

D

B

C

C

D

D

A

C

二、填空題

13.     14.      15.4       16.③④

三、解答題

17.解:(1)∵,

.           …………2分

,       …………4分

,∴.                 …………6分

   (2)∵,,,

.      …………8分

,

.…………10分

18.(1)證明:連結(jié)BD交AC于點M,取BE的中點N,

連結(jié)MN,則MN∥ED且MN=ED,依題意,

知AG∥ED且AG=ED,

∴MN∥AG且MN=AG.

故四邊形MNAG是平行四邊形, AM∥GN,

即AC∥GN,…………3分

又∵

∴ AC∥平面GBE.…………6分

   (2)解:延長EG交DA的延長線于H點,

連結(jié)BH,作AO⊥GH于O點,連結(jié)BO.

∵ 平面ABCD⊥平面ADEF,平面ABCD∩平面ADEF=AD ,AB⊥AD

∴ AB⊥平面ADEF,由三垂線定理,知AB⊥GH,

故∠AOB就是二面角B-GE-D的平面角.…………8分

∵ 平面ABCD⊥平面ADEF,平面ABCD∩平面ADEF=AD ,ED⊥AD

∴ ED⊥平面ABCD,

故∠EBD就是直線BE與平面ABCD成的角,……10分

知∠EBD=45°,設(shè)AB=a,則BE=BD=a.

在直角三角形AGH中:AH=AD= a,AG=a,

HG=,AO=

在直角三角形ABO中:tan∠AOB=

∴ ∠AOB=60°.

故二面角B-GE-D的大小為60°.…………12分

19.解:(1)記A0表示事件“取出的2件產(chǎn)品中無二等品”,A1表示事件“取出的2件產(chǎn)品中恰有1件是二等品”.則A0、A1互斥,且A=A0+A1

故P (A)=P (A0+A1)=P (A0) +P (A1)=(1-p)2+Cp (1-p)=1-p2

依題意,知1-p2=0.96,又p>0,得p=0.2.…………6分

   (2)(理)ξ可能的取值為0,1,2.

若該批產(chǎn)品共100件,由(1)知,其中共有二等品100×0.2=20件,故

P(ξ=0)=.P(ξ=1)=.  

P(ξ=2)=.…………9分

所以ξ的分布列為

ξ

0

1

2

P

ξ的期望…………12分

20.解 (1)上單調(diào)遞增,上單調(diào)遞減,

       有兩根

            ……4分

    令

    則,

因為上恒大于0,所以上單調(diào)遞增,

,  ,

        .                            ……………6分

   (2)

    

      .                        ………………8分

      ①當(dāng)時,,定義域為,

    恒成立,上單調(diào)遞增;           …………9分

       ②當(dāng)時,,定義域:,

       恒成立,上單調(diào)遞增;     …………10分

       ③當(dāng)時,,定義域:,

       由,由

       故在上單調(diào)遞增;在上單調(diào)遞減.     …………11分

       所以當(dāng)時,上單調(diào)遞增,故無極值;

       當(dāng)時,上單增;故無極值.

       當(dāng)時,上單調(diào)遞增;在上單調(diào)遞減.

       故有極小值,且的極小值為. …12分

21.解:(I)設(shè)依題意得

…………2分

消去,整理得.…………4分

    當(dāng)時,方程表示焦點在軸上的橢圓;

    當(dāng)時,方程表示焦點在軸上的橢圓;

    當(dāng)時,方程表示圓.        …………6分

   (II)當(dāng)時,方程為,   

       設(shè)直線的方程為,

                         …………8分

消去.…………10分

根據(jù)已知可得,故有,

,

*直線的斜率為.  …………12分

22.證明  (Ⅰ)即證.

  ,,

  .…………2分

假設(shè),則

,…………4分

,

  .

綜上所述,根據(jù)數(shù)學(xué)歸納法,命題成立. …………6分

   (Ⅱ)由(Ⅰ),得

,…………8

  .…………10

又  ,  ,

.………12分

 

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊答案