題目列表(包括答案和解析)
(本大題滿分14分)
已知數(shù)列{an}的前n項(xiàng)和Sn是二項(xiàng)式展開式中含x奇次冪的系數(shù)和.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè),求;
(3)證明:.
(本小題滿分14分)
已知數(shù)列
(1)計(jì)算x2,x3,x4的值;
(2)試比較xn與2的大小關(guān)系;
(3)設(shè),Sn為數(shù)列{an}前n項(xiàng)和,求證:當(dāng).
(本題滿分14分)
(理)已知數(shù)列{an}的前n項(xiàng)和,且=1,
.
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)已知定理:“若函數(shù)f(x)在區(qū)間D上是凹函數(shù),x>y(x,y∈D),且f’(x)存在,則有
< f’(x)”.若且函數(shù)y=xn+1在(0,+∞)上是凹函數(shù),試判斷bn與bn+1的大;
(III)求證:≤bn<2.
(本題滿分14分)
(理)已知數(shù)列{an}的前n項(xiàng)和,且=1,
.(I)求數(shù)列{an}的通項(xiàng)公式;
(II)已知定理:“若函數(shù)f(x)在區(qū)間D上是凹函數(shù),x>y(x,y∈D),且f’(x)存在,則有
< f’(x)”.若且函數(shù)y=xn+1在(0,+∞)上是凹函數(shù),試判斷bn與bn+1的大;
(III)求證:≤bn<2.
一.選擇題:DCBBA
二.填空題:11.4x-3y-17 = 0 12.33 13.
14. 15.
三.解答題:
16.(1)解:∵, 2分
∴由得:,即 4分
又∵,∴ 6分
(2)解: 8分
由得:,即 10分
兩邊平方得:,∴ 12分
17.方法一
(1)證:∵CD⊥AB,CD⊥BC,∴CD⊥平面ABC 2分
又∵CDÌ平面ACD,∴平面ACD⊥平面ABC 4分
(2)解:∵AB⊥BC,AB⊥CD,∴AB⊥平面BCD,故AB⊥BD
∴∠CBD是二面角C-AB-D的平面角
6分
∵在Rt△BCD中,BC = CD,∴∠CBD = 45°
即二面角C-AB-D的大小為45°
8分
(3)解:過(guò)點(diǎn)B作BH⊥AC,垂足為H,連結(jié)DH
∵平面ACD⊥平面ABC,∴BH⊥平面ACD,
∴∠BDH為BD與平面ACD所成的角
10分
設(shè)AB = a,在Rt△BHD中,,
∴
又,∴ 12分
方法二
(1)同方法一 4分
(2)解:設(shè)以過(guò)B點(diǎn)且∥CD的向量為x軸,為y軸和z軸建立如圖所示的空間直角坐標(biāo)系,設(shè)AB = a,則A(0,0,a),C(0,1,0),D(1,1,0), = (1,1,0), = (0,0,a)
平面ABC的法向量 = (1,0,0)
設(shè)平面ABD的一個(gè)法向量為n = (x,y,z),則
取n = (1,-1,0)
6分
∴二面角C-AB-D的大小為45° 8分
(3)解: = (0,1,-a), = (1,0,0), = (1,1,0)
設(shè)平面ACD的一個(gè)法向量是m = (x,y,z),則
∴可取m = (0,a,1),設(shè)直線BD與平面ACD所成角為,則向量、m的夾角為
故 10分
即
又,∴ 12分
18.解:該商場(chǎng)應(yīng)在箱中至少放入x個(gè)其它顏色的球,獲得獎(jiǎng)金數(shù)為,
則= 0,100,150,200
,,
, 8分
∴的分布列為
|