A. B. 查看更多

 

題目列表(包括答案和解析)

a
b
?存在唯一的實數(shù)λ,使
b
a
;
a
b
?存在不全為零的實數(shù)λ,μ,使λ
a
b
=
0

a
b
不共線?若存在實數(shù)λ,μ使λ
a
b
=
0
,則λ=μ=0;
a
b
不共線?不存在實數(shù)λ,μ使λ
a
b
=
0
.下列命題是真命題的是
 
(填序號)

查看答案和解析>>

△A'B'C'斜二測畫法畫出的正△ABC的直觀圖,記△A'B'C'的面積為S',△ABC的面積為S,則
S′S
=
 

查看答案和解析>>

“a+b∈Z”是“x2+ax+b=0有且僅有整數(shù)解”的
必要
必要
條件.

查看答案和解析>>

“a=b”是“
a
=
b
”的
必要不充分
必要不充分
條件.(從“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中選擇一個填空)

查看答案和解析>>

|
a
|=|
b
|=1
,<
a
b
>=
π
3
,且(
a
+
c
)(
b
+
c
)=
1
2
,則|
c
|取值范圍( 。

查看答案和解析>>

一.選擇題:本大題共12個小題,每小題5分,共60分.

ABCCB  ADCCD  BD

二.填空題:本大題共4個小題,每小題5分,共20分.

13. 6 ;14. 60 ;15.;16 .446.

三、解答題:本大題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.

17. (Ⅰ)設(shè)的公比為q(q>0),依題意可得

解得                                             (5分)

∴數(shù)列的通項公式為                                                          (6分)

(Ⅱ)                                   (10分)

18. (Ⅰ)(2分)∴;   (4分)

,即單調(diào)遞增

∴函數(shù)的單調(diào)遞增區(qū)間為                                 (6分)

(Ⅱ)∵,∴,∴     (10分)

∴當時,有最大值,此時.                    (12分)

19.(Ⅰ)記表示甲以獲勝;表示乙以獲勝,則互斥,事件,

     (6分)

(Ⅱ)記表示甲以獲勝;表示甲以獲勝, 則互斥,事件, ∴(12分)

20.                    解法一:(Ⅰ)證明:在直三棱柱中,

面ABC,又D為AB中點,∴CD⊥面,∴CD⊥,∵AB=,∴

又DE∥⊥DE ,又DE∩CD =D

⊥平面CDE                                     (6分)

(Ⅱ)由(Ⅰ)知⊥平面CDE,設(shè)與DE交于點M ,

過B作BN⊥CE,垂足為N,連結(jié)MN , 則A1N⊥CE,故∠A1NM即為二面角平面角.                                                                        (9分) 

文本框: S,,又由△ENM   △EDC得

.   又∵

在Rt△A1MN中,tan∠A1NM ,                                            (12分)

故二面角的大小為.                                                     (12分)

解法二:AC=BC=2,AB=,可得AC⊥BC,故可以C為坐標原點建立如圖所示直角

坐標系C-xyz.則C(0,0,0),A(2,0,0),B(0,2,0),

D(1,1,0),E (0,2,),(2,0,)(3分)

(Ⅰ)(-2,2,-),(1,1,0),

(0,2,).∵

, 又CE∩CD =C

⊥平面CDE                            (6分)

 

 

(Ⅱ)設(shè)平面A1CE的一個法向量為n=(x,y,z),   (2,0,),

(0,2,).∴由n,n

,,n=(2,1,)                         (9分)

又由(Ⅰ)知(-2,2,-)為平面DCE的法向量.

等于二面角的平面角.                          (11分)

.                                       (12分)

二面角的大小為.                              (12分)

21.(Ⅰ).由題意知為方程的兩根

,得                             (3分)

從而,

時,;當時,

上單調(diào)遞減,在上單調(diào)遞增.     (7分)

(Ⅱ)由(Ⅰ)知上單調(diào)遞減,處取得極值,此時,若存在,使得,

即有就是  解得.              (12分)

故b的取值范圍是.                                (12分)        

22. (Ⅰ)設(shè)橢圓方程為(a>b>0),由已知c=1,

又2a= .   所以a=,b2=a2-c2=1,

橢圓C的方程是+ x2 =1.                                                                  (4分)

  (Ⅱ)若直線l與x軸重合,則以AB為直徑的圓是x2+y2=1,

若直線l垂直于x軸,則以AB為直徑的圓是(x+)2+y2=

解得即兩圓相切于點(1,0).

因此所求的點T如果存在,只能是(1,0).

事實上,點T(1,0)就是所求的點.證明如下:                             (7分)

當直線l垂直于x軸時,以AB為直徑的圓過點T(1,0).

若直線l不垂直于x軸,可設(shè)直線l:y=k(x+).

即(k2+2)x2+k2x+k2-2=0.

記點A(x1,y1),B(x2,y2),則

又因為=(x1-1, y1), =(x2-1, y2),

?=(x1-1)(x2-1)+y1y2=(x1-1)(x2-1)+k2(x1+)(x2+)

=(k2+1)x1x2+(k2-1)(x1+x2)+k2+1

=(k2+1) +(k2-1) + +1=0,       (11分)

所以TA⊥TB,即以AB為直徑的圓恒過點T(1,0).

所以在坐標平面上存在一個定點T(1,0)滿足條件.                        (12分)

 


同步練習(xí)冊答案