已知拋物線C: .A .B為拋物線上兩點.若過A .B的兩條切線相互垂直. (Ⅰ)求AB中點軌跡E的方程; 查看更多

 

題目列表(包括答案和解析)

已知拋物線C:x2=2my(m>0)和直線l:y=kx-m沒有公共點(其中k、m為常數(shù)),動點P是直線l上的任意一點,過P點引拋物線C的兩條切線,切點分別為M、N,且直線MN恒過點Q(k,1).
(1)求拋物線C的方程;
(2)已知O點為原點,連接PQ交拋物線C于A、B兩點,證明:S△OAP•S△OBQ=S△OAQ•S△OBP

查看答案和解析>>

已知拋物線C:y2=4x,過點A(x0,0)(其中x0為常數(shù),且x0>0)作直線l交拋物線于P,Q(點P在第一象限);
(1)設(shè)點Q關(guān)于x軸的對稱點為D,直線DP交x軸于點B,求證:B為定點;
(2)若x0=1,M1,M2,M3為拋物線C上的三點,且△M1M2M3的重心為A,求線段M2M3所在直線的斜率的取值范圍.

查看答案和解析>>

已知拋物線C:x2=2my(m>0)和直線l:y=x-m沒有公共點(其中m為常數(shù)).動點P是直線l上的任意一點,過P點引拋物線C的兩條切線,切點分別為M、N,且直線MN恒過點Q(1,1).
(1)求拋物線C的方程;
(2)已知O點為原點,連接PQ交拋物線C于A、B兩點,求
|PA|
|
PB|
-
|
QA|
|
QB|
的值.

查看答案和解析>>

已知拋物線C:y2=8x,O為坐標(biāo)原點,動直線l:y=k(x+2)與拋物線C交于不同兩點A,B
(1)求證:
OA
OB
為常數(shù);
(2)求滿足
OM
=
OA
+
OB
的點M的軌跡方程.

查看答案和解析>>

已知拋物線C:x2=2my(m>0)和直線l:y=x-m沒有公共點(其中m為常數(shù)).動點P是直線l上的任意一點,過P點引拋物線C的兩條切線,切點分別為M、N,且直線MN恒過點Q(1,1).
(1)求拋物線C的方程;
(2)已知O點為原點,連接PQ交拋物線C于A、B兩點,求數(shù)學(xué)公式的值.

查看答案和解析>>

一. 每小題5分,共60分      DACDB  DACBB   DD

二. 每小題5分,共20分.其中第16題前空2分,后空3分.

13.  60;     14.  ;     15. ;    16.   2,-

三.解答題:本大題共6個小題,共70分.解答應(yīng)寫出文字說明,證明過程或演算步驟.

17.(Ⅰ) 

    

(Ⅱ)                (7分)

       (8分)

                      (10分)

18.解:(Ⅰ)記“該人被錄用”的事件為事件A,其對立事件為,則

(Ⅱ)該生參加測試次數(shù)ξ的可能取值為2,3,4,依題意得

(10分)

(8分)

(6分)

 

 

分布列為 

2

3

4

p

1/9

4/9

4/9

……………………………….11分

 

 

 

……………..12分       

19. 解:(Ⅰ)依題意 ,,故…1分,     

當(dāng)時, ① 又

②?①整理得:,故為等比數(shù)列…………………3分

…………4分∴…………………………….5分

,即是等差數(shù)列………………….6分

(Ⅱ)由(Ⅰ)知,

…8分.

      …………9分,依題意有,解得…11分

故所求最大正整數(shù)的值為……………………………………………12分

20.

 

 

 

 

 

 

 

 

 

 

解法一圖

解法二圖

 

 

解法一:(1)證明:

………………………….5分

(8分)

 解法二:以C為坐標(biāo)原點,射線CA為x軸的正半軸,建立如圖所示的空間直角坐        標(biāo)系C-xyz.依題意有C ,

                      (3分)

(Ⅰ)

(5分)

    (12分)

    設(shè)

    變化情況如下表:

     

    (0,1)

    1

    (1,+∞)

    0

    +

    遞減

    0

    遞增

    處有一個最小值0,即當(dāng)時,>0,∴=0只有一個解.即當(dāng)時,方程有唯一解………………………6分.

      (12分)

      (1分) 依題意又由過兩點A,B的切線相互垂直得

      從而

      即所求曲線E的方程為 y=……………………………………4分

        (Ⅱ)由(Ⅰ)得曲線F方程為,令=0,得曲線F與軸交點是(0,b);令,由題意b≠-1 且Δ>0,解得b<3 且b≠-1.           ………………………………………….6分

      (?)方法一:設(shè)所求圓的一般方程為=0 得這與=0 是同一個方程,故D=4,.………………….8分.

      =0 得,此方程有一個根為b+1,代入得出E=?b?1.

      所以圓C 的方程…………………9分

      方法二:①+②得

      (?)方法一:圓C 必過定點(0,1)和(-4,1).………………………11分

      證明如下:將(0,1)代入圓C 的方程,得左邊=0+1+2×0-(b+1)+b=0,右邊=0,

      所以圓C 必過定點(0,1).同理可證圓C 必過定點(-4,1).…………………12分

        方法二:由 圓C 的方程得………………11分

      12分

       

       


      同步練習(xí)冊答案