16. 解:(1)如圖 查看更多

 

題目列表(包括答案和解析)

:如圖,在平面直角坐標(biāo)系xoy中,拋物線yx2x-10與x軸的交點(diǎn)為A,與y軸的交點(diǎn)為點(diǎn)B,過點(diǎn)Bx軸的平行線BC,交拋物線于點(diǎn)C,連結(jié)AC.現(xiàn)有兩動點(diǎn)PQ分別從O,C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以每秒4個(gè)單位的速度沿OA向終點(diǎn)A移動,點(diǎn)Q以每秒1個(gè)單位的速度沿CB向點(diǎn)B移動,點(diǎn)P停止運(yùn)動時(shí),點(diǎn)Q也同時(shí)停止運(yùn)動.線段OC,PQ相交于點(diǎn)D,過點(diǎn)DDEOA,交CA于點(diǎn)E,射線QEx軸于點(diǎn)F.設(shè)動點(diǎn)P,Q移動的時(shí)間為t(單位:秒)
(1)求A,BC三點(diǎn)的坐標(biāo)和拋物線的頂點(diǎn)坐標(biāo);
(2)當(dāng)t為何值時(shí),四邊形PQCA為平行四邊形?請寫出計(jì)算過程;
(3)當(dāng)t∈(0,)時(shí),△PQF的面積是否總為定值?若是,求出此定值;若不是,請說明理由;
(4)當(dāng)t為何值時(shí),△PQF為等腰三角形?請寫出解答過程.

查看答案和解析>>

精英家教網(wǎng)如圖,矩形紙片ABCD的邊AB=24,AD=25,點(diǎn)E、F分別在邊AB與BC上.現(xiàn)將紙片的右下角沿EF翻折,使得頂點(diǎn)B翻折后的新位置B1恰好落在邊AD上.設(shè)
BEEF
=t
,EF=l,l關(guān)于t的函數(shù)為l=f(t),試求:
(1)函數(shù)f(t)的解析式;
(2)函數(shù)f(t)的定義域.

查看答案和解析>>

如圖,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥側(cè)面AC1
精英家教網(wǎng)
(1)求證:BE=EB1;
(2)若AA1=A1B1;求平面A1EC與平面A1B1C1所成二面角(銳角)的度數(shù).
注意:在下面橫線上填寫適當(dāng)內(nèi)容,使之成為(Ⅰ)的完整證明,并解答(Ⅱ).
精英家教網(wǎng)
(1)證明:在截面A1EC內(nèi),過E作EG⊥A1C,G是垂足.
①∵
 

∴EG⊥側(cè)面AC1;取AC的中點(diǎn)F,連接BF,F(xiàn)G,由AB=BC得BF⊥AC,
②∵
 

∴BF⊥側(cè)面AC1;得BF∥EG,BF、EG確定一個(gè)平面,交側(cè)面AC1于FG.
③∵
 

∴BE∥FG,四邊形BEGF是平行四邊形,BE=FG,
④∵
 

∴FG∥AA1,△AA1C∽△FGC,
⑤∵
 

FG=
1
2
AA1=
1
2
BB1
,即BE=
1
2
BB1,故BE=EB1

查看答案和解析>>

精英家教網(wǎng)如圖,是網(wǎng)絡(luò)工作者經(jīng)常用來解釋網(wǎng)絡(luò)動作的蛇形模型:數(shù)1出現(xiàn)在第1行;數(shù)2,3出現(xiàn)在第2行;數(shù)6,5,4(從左至右)出現(xiàn)在第3行;數(shù)7,8,9,10出現(xiàn)在第4行;依此類推,則第63行從左至右算第6個(gè)數(shù)為
 

查看答案和解析>>

精英家教網(wǎng)如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦點(diǎn)和上頂點(diǎn)分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個(gè)橢圓的特征三角形是相似的,則稱這兩個(gè)橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
(1)已知橢圓C1
x2
4
+y2=1和C2
x2
16
+
y2
4
=1,判斷C2與C1是否相似,如果相似則求出C2與C1的相似比,若不相似請說明理由;
(2)已知直線l:y=x+1,在橢圓Cb上是否存在兩點(diǎn)M、N關(guān)于直線l對稱,若存在,則求出函數(shù)f(b)=|MN|的解析式.

查看答案和解析>>


同步練習(xí)冊答案